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ABSTRACT
Personalized PageRank, as a graphical model, has been proven as

an effective solution in many applications such as web page search,

recommendation, etc. However, in the real world, the setting of

personalized PageRank is usually dynamic like the evolving World

WideWeb. On the one hand, the outdated PageRank solution can be

sub-optimal for ignoring the evolution pattern. On the other hand,

solving the solution from the scratch at each timestamp causes

costly computation complexity. Hence, in this paper, we aim to

solve the Personalized PageRank effectively and efficiently in a fully

dynamic setting, i.e., every component in the Personalized PageRank
formula is dependent on time. To this end, we propose the EvePPR

method that can track the exact personalized PageRank solution at

each timestamp in the fully dynamic setting, and we theoretically

and empirically prove the accuracy and time complexity of EvePPR.

Moreover, we apply EvePPR to solve the dynamic knowledge graph

alignment task, where a fully dynamic setting is necessary but

complex. The experiments show that EvePPR outperforms the state-

of-the-art baselines for similar nodes retrieval across graphs.
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1 INTRODUCTION
Personalized PageRank, as a classic graphical model, has been

proven as an effective solution in many application domains, such

as web page search, recommendation, disinformation detection,

and social network analysis [6, 8, 13, 32, 38, 40, 49]. However, in the

real world, the setting of Personalized PageRank is dynamic, i.e., the
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Figure 1: Example of the alignment between Facebook and
LinkedIn, where each node is an attributed user and differ-
ent color solid lines stand for different attributed edges. The
red dashed line denotes the alignment of node pairs cross
two graphs, the reason of alignment is that the shaded area
in LinkedIn is similar to the given Facebook graph, in terms
of topological structure, node attributes, and edge attributes.

latent structure for random walks is dependent on time [1, 7, 9, 15]

such like the evolving World Wide Web (WWW). On the one hand,

an outdated (i.e., obtained from the previous structure) PageRank

solution may be sub-optimal for the current structure by ignoring

the graph evolution patterns [42]. On the other hand, just solving

the PageRank solution at each timestamp from the scratch causes

unaffordable computation complexity, especially when the input

graph structure is large [25].

To this end, we aim to study how to track the personalized PageR-

ank vector at each timestamp effectively and efficiently. Moreover,

different from previous PageRank tracking methods [25, 42], we

extend the difficulty of tracking personalized PageRank to a fully
dynamic setting, i.e., every component in the Personalized PageR-
ank formula is dependent on time such as transition probability

matrix and stochastic vector. To the best of our knowledge, the

state-of-the-art tracking methods [10, 24, 25, 27, 42] only allow the

transition matrix evolves between two consecutive timestamps.

A fully dynamic setting for the personalized PageRank tracking

still keeps untouched because of the difficulty but is very important

to many downstream tasks. Firstly, in this paper, we propose the

EvePPR method, which is proven to track the exact personalized

PageRank vector for each timestamp in the fully dynamic setting,

and we prove the tracking accuracy and demonstrate the time com-

plexity. Secondly, to show the importance of the fully dynamic

setting, we start from proving that the personalized PageRank can

solve the knowledge graph alignment task, as shown in Figure 1,

which is a task of searching similar nodes across two knowledge

graphs (e.g., given a user in LinkedIn network and try to find the

https://doi.org/10.1145/3543507.3583474
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same (or similar) user in Facebook). The fully dynamic setting of per-

sonalized PageRank allows topological structures, node attributes,

and edge attributes of the two given knowledge graphs evolve si-

multaneously, which is complex and has no effective solutions until

now [11, 36, 37, 46, 50] but more realistic and similar to the real

world scenario. Furthermore, to make EvePPR solve the dynamic

knowledge graph alignment task more effectively, we propose to

encode the structural knowledge into EvePPR by crafting its sto-

chastic vector, and this crafting operation can be fast updated by

leveraging the temporal dependency of dynamic graphs.

Our contributions can be summarized as follows.

• We propose a personalized PageRank tracking method, named

EvePPR, which is able to track the exact solution at each times-

tamp in a fully dynamic setting, i.e., each component in the

standard personalized PageRank equation can evolve.

• For the proposed EvePPR, we theoretically and empirically prove

the tracking accuracy and the time complexity.

• We show the necessity of the fully dynamic setting by adapting

EvePPR to the dynamic knowledge graph alignment task, which

allows topological structures, node attributes, and edge attributes

of two knowledge graphs ti change simultaneously.

• We design extensive experiments to show the effectiveness and

efficiency of the proposed EvePPR in different tasks.

The rest of the paper is organized as follows. In Section 2, we

illustrate the problem setting and background knowledge, paving

the way for proposing our EvePPR. In Section 3, we formally pro-

pose our personalized PageRank tracking method named EvePPR,

which is proved to have computational efficiency to track the exact

personalized PageRank vector at each timestamp in the fully dy-

namic setting. To show the necessity of dynamic setting, in Section

4, we adapt EvePPR to solve the dynamic knowledge graph align-

ment task, where the fully dynamic setting allows more complex

evolving scenarios. The corresponding experiments are executed in

Section 5, to show the effectiveness and efficiency outperformance

of EvePPR. Before we conclude the paper in Section 7, we discuss

related work in Section 6.

2 PROBLEM DEFINITION
We use lowercase letters (e.g., 𝛼) for scalars, bold lowercase letters

for column vectors (e.g., 𝒗), bold capital letters for matrices (e.g.,

𝑷 ), parenthesized superscript to denote the temporal or iteration

index (e.g., 𝑷 (𝑡 ) ), and unparenthesized superscript to denote the

power (e.g., 𝑷𝑘 ). We use graph and network interchangeably. The

notation for proposing our EvePPR is summarized in Table 1.

Personalized PageRank. The standard personalized PageRank
vector is expressed as follows.

𝒗 = 𝛼𝑷𝒗 + (1 − 𝛼)𝒉 (1)

where 𝑷 ∈ R𝑛×𝑛 is the transition matrix, which is computed as

𝑫−1𝑨. And 𝑨 ∈ R𝑛×𝑛 and 𝑫 ∈ R𝑛×𝑛 are adjacency matrix and

degree matrix of the given graph G with 𝑛 nodes. 𝒉 is the stochastic

vector (i.e., teleport vector or personalized vector) of random walks,

𝛼 is the dumping constant factor, and 𝒗 is the stationary distribution
of random walks, i.e., personalized PageRank vector. One way of

solving the personalized PageRank is through the power iteration,

which iteratively solves 𝒗 (𝑖+1) as below, until the difference between
𝒗 (𝑖+1) and 𝒗 (𝑖) is smaller than a constant tolerance.

𝒗 (𝑖+1) ← 𝛼𝑷𝒗 (𝑖) + (1 − 𝛼)𝒉 /*power iteration*/ (2)

Table 1: Table of Notation
Symbol Definition and Description

G the underlying graph structure of random walks

𝑷 the transition matrix of random walks on graph G
𝒉 the stochastic vector (or teleport vector) of random walks

𝛼 damping factor of random walks

𝒗 personalized PageRank vector

𝒆𝑖 one-hot vector with the 𝑖-th entry equals to 1

𝒒𝑖 single-source PageRank vector correspond to seed vector 𝒆𝑖
𝑾𝑖 transition matrix used when calculating 𝒒𝑖
𝜖 tolerance hyperparameter

⊗ Kronecker product

⊙ Hadamard product

The computation of the power iteration method is costly, whose

time complexity is 𝑂 (𝑛3) in the worst case.

Source nodes of personalized PageRank. Source nodes (i.e.,
seed nodes) are non-zero entries in the stochastic vector. If the

stochastic vector has only one non-zero entry, we call the PageR-

ank "single-source". If the stochastic vector has multiple non-zero

entries, we call the PageRank "having multiple sources".

Fully dynamic setting of personalized PageRank. In our pa-
per, we focus on the fully dynamic setting for personalized PageR-

ank, i.e., each component is dependent on time, as follows.

𝒗 (𝑡 ) = 𝛼𝑷 (𝑡 )𝒗 (𝑡 ) + (1 − 𝛼)𝒉(𝑡 ) (3)

The transition matrix of 𝑷 (𝑡 ) is dependent on time because the un-

derlying graph structure is evolving, which can be represented as

{G (1) ,G (2) , . . . ,G (𝑇 ) }, 𝑡 ∈ {1, 2, . . . ,𝑇 }. The stochastic vector ℎ (𝑡 )
is dependent on time because we allow end-users to change the in-

terested seed nodes along with the evolving underlying structures.

The varying ℎ (𝑡 ) is untouched by current PageRank tracking meth-

ods [10, 24, 25, 27, 42] but has a huge potential to serve real-world

downstream tasks such as dynamic knowledge graph alignment.

The details are shown in Section 4. With varying 𝑷 (𝑡 ) and ℎ (𝑡 ) , we
aim to track the exact solution 𝒗 (𝑡 ) at each timestamp efficiently

instead of solving it from scratch like the power iteration.

For adding and deleting nodes, without loss of generality, we can

view them as existing dangling nodes in the previous and future

graph structures like [10, 33]. Then we can denote 𝑷 (𝑡 ) ∈ R𝑛×𝑛
and 𝒉(𝑡 ) ∈ R𝑛×1 for avoiding the dimension inconsistency across

timestamps. Note that, we do not limit 𝒉(𝑡 ) to be a one-hot vector,

which means the proposed EvePPR can track the multi-source

personalized PageRank vector.

Problem. Personalized PageRank in the Fully Dynamic Setting
Input: (i) a sequence of evolving graph structures, represented by

transition matrices {𝑷 (1) , 𝑷 (2) , . . . , 𝑷 (𝑇 ) }, (ii) a sequence of
varying end-user interests, represented by stochastic vectors
{𝒉(1) ,𝒉(2) , . . . ,𝒉(𝑇 ) }, (iii) constant tolerance 𝜖 .

Output: a sequence of personalized PageRank vectors 𝒗 (𝑡 ) whose
error bound is not greater than 𝜖 , for 𝑡 ∈ {1, 2, . . . ,𝑇 }.

3 PROPOSED EVEPPR
In this section, we start from introducing the preliminary of tracking

personalized PageRank vector in a partially dynamic setting, which

paves the way for tracking the personalized PageRank in the fully

dynamic setting. Then, we introduce our solutions in the fully

dynamic setting, EvePPR and its fast approximation EvePPR-APP.
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3.1 Preliminary
Here, we first introduce how to track exact personalized PageR-

ank vector in a partially dynamic setting, i.e., the transition matrix

𝑷 (𝑡 ) is evolving, but the stochastic vector 𝒉(𝑡 ) = 𝒉 is fixed. Target-

ing this partially dynamic setting, many personalized PageRank

tracking methods are proposed [25, 42, 44]. To kick off our fully

dynamic tracking method, we first introduce one of these methods,

i.e., Offset Score Propagation (OSP) [42], which can track the exact

personalized PageRank in this partially dynamic setting.

In the partially dynamic setting, when the graph structure changes

from G (𝑡 ) to G (𝑡+1) , the PageRank vector 𝒗 (𝑡 ) becomes outdated.

To get 𝒗 (𝑡+1) , we first need to update the transitionmatrix from 𝑷 (𝑡 )

to 𝑷 (𝑡+1) by updating adjacency matrix 𝑨(𝑡 ) with newly inserted

and deleted edges. With 𝑷 (𝑡+1) , the core idea of OSP [42] is to push

out the previous probability distribution score from the changed

part to the residual part of the graph [42, 43], and then add the

pushed out distribution back to the previous stationary distribution

𝒗 (𝑡 ) in order to finally obtain the new stationary distribution 𝒗 (𝑡+1) .
The pushed out distribution score is initially stored in the offset

vector 𝒒
offset

, and then it will spread over the new graph structure.

The detailed tracking process can be described in Algorithm 1.

Theorem 3.1 (Exactness of OSP in Partially Dynamic Set-

ting). In the partially dynamic setting,𝑂𝑆𝑃 (𝒗 (𝑡−1) , 𝑷 (𝑡−1) , 𝑷 (𝑡 ) , 𝛼, 𝜖)
could output the personalized PageRank vector 𝒗 (𝑡 ) satisfying 𝒗 (𝑡 ) =
𝛼𝑷 (t)𝒗 (𝑡 ) + (1 − 𝛼)𝒉. (Proof in Appendix A.1)

3.2 EvePPR for the Fully Dynamic Setting
In the fully dynamic setting, the major difference from the partially

dynamic setting is that we allow the stochastic vector to evolve,

i.e., 𝒉(𝑡 ) ≠ 𝒉(𝑡+1) , to reflect the varying interests from end-users

when the latent graph structure updates. However, each entry in the

stochastic vector is a source node for randomwalkswith restart [32],

and we do not limit 𝒉(𝑡 ) to be a one-hot vector. How to track the

multi-source personalized PageRank is complex, and how it relates

to multiple single-source tracking is not clear until now.

Hence, we propose EvePPR to track the personalized PageRank

vector in the fully dynamic setting and allow 𝒉(𝑡 ) to be a multi-

source stochastic vector. For EvePPR, we prove that tracking multi-

source personalized PageRank can be decomposed into tracking

multiple single-source personalized PageRank vectors, by viewing

each single-source tracking as an intermediate step of randomwalks.

To be specific, for each single source node 𝑖 , we store a personalized

PageRank vector, i.e., 𝒒𝑖 , which is initially computed from the first

transition matrix 𝑷 (𝑡=0) . Then, given a timestamp 𝑡 when the single

source node 𝑖 changes, we retrieve 𝒒𝑖 and update it (e.g., by OSP),

then we involve the updated 𝒒𝑖 to the tracking process of 𝒗 (𝑡 ) . The
detailed operations are summarized in Algorithm 2

The Algorithm 2 is easy to understand and has two sequential

parts, i.e., pre-computing phase and tracking phase. In Step 2–5,

at time 𝑡 = 0, we initialize a dictionaryM for storing the current

transition matrix 𝑷 (𝑡=0) for each node 𝑖 ∈ {1, 2, . . . , 𝑛}. With which

transition matrix, the single-source personalized PageRank 𝒒𝑖 is
computed by the power iteration method by setting each node 𝑖

as the seed node with the one-hot vector 𝒆𝑖 (i.e., the 𝑖-th entry

equals to 1, others equal to 0). In the future, the transition matrix

stored in M will be updated if the corresponding seed node is

Algorithm 1 Offset Score Propagation (OSP)

Input:
previous personalized PageRank vector 𝒗 (𝑡−1) , previous transi-
tion matrix 𝑷 (𝑡−1) , new transition matrix 𝑷 (𝑡 ) , damping factor

𝛼 , error tolerance 𝜖

Output:
updated personalized PageRank vector 𝒗 (𝑡 )

1: Obtain offset vector 𝒒
offset

= 𝛼 (𝑷 (𝑡 ) − 𝑷 (𝑡−1) )𝒗 (𝑡−1)

2: Set 𝑖 = 0, 𝒗
offset

= 𝒒
offset

, 𝒙 (𝑖)
offset

= 𝒒
offset

3: for 𝑖 = 1; ∥𝒙 (𝑖−1)
offset
∥1 > 𝜖 ; 𝑖++ do

4: 𝒙 (𝑖)
offset

= 𝛼𝑷 (𝑡 )𝒙 (𝑖−1)
offset

5: 𝒗
offset

+ = 𝒙 (𝑖)
offset

6: end for
7: Return: 𝒗 (𝑡 ) = 𝒗 (𝑡−1) + 𝒗

offset

updated. In Step 8, we first call OSP to compute a intermediate

vector 𝒗
mid

for time 𝑡 , which is tracked essentially based on the

outdated stochastic vector 𝒉(𝑡−1) , because OSP is not able to track

personalized PageRank vector when 𝒉 evolves. After that, when

we detect the evolving seed nodes in Step 9, we can then track

multiple single-source PageRank vectors in Step 12, by retrieving

its last active transition matrix inM and updating it in Step 13.

Then, in Step 14, we add each single-source tracked vector to 𝒗
mid

,

and finally obtain 𝒗 (𝑡 ) .

Algorithm 2 EvePPR

Input: a sequence of transition matrices {𝑷 (0) , 𝑷 (1) , . . . , 𝑷 (𝑇 ) }, a
sequence of stochastic vectors {𝒉(0) ,𝒉(1) , . . . ,𝒉(𝑇 ) }, damping

factor 𝛼 ; error tolerance 𝜖

Output: a sequence of personalized PageRank vectors

{𝒗 (0) , 𝒗 (1) , . . . , 𝒗 (𝑇 ) }
/* Pre-computing Phase */

1: Compute 𝒗 (0) = 𝑃𝑜𝑤𝑒𝑟𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑷 (0) ,𝒉(0) , 𝛼, 𝜖)
2: Construct dictionaryM with 𝑛 keys {1, 2, ..., 𝑛}
3: for iteration 𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖++ do
4: 𝒒𝑖 = 𝑃𝑜𝑤𝑒𝑟𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑷 (0) , 𝒆𝑖 , 𝛼, 𝜖)
5: SetM[𝑖] = 𝑷 (0)

6: end for
/* Tracking Phase */

7: for timestamp 𝑡 = 1; 𝑡 ≤ 𝑇 ; 𝑡++ do
8: 𝒗

mid
= 𝑂𝑆𝑃 (𝒗 (𝑡−1) , 𝑷 (𝑡−1) , 𝑷 (𝑡 ) , 𝛼, 𝜖)

9: Δ𝒉 = 𝒉(𝑡 ) − 𝒉(𝑡−1)
10: for iteration 𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖++ do
11: if Δh(𝑖) ≠ 0 then
12: 𝒒𝑖 = 𝑂𝑆𝑃 (𝒒𝒊,M[𝑖], 𝑷 (t) , 𝛼, 𝜖)
13: M[𝑖] = 𝑷 (𝑡 )

14: 𝒗
mid
+ = Δ𝒉(𝑖)𝒒𝑖

15: end if
16: end for
17: 𝒗 (t) = 𝒗

mid

18: end for
19: Return: 𝒗 (𝑡 ) for 𝑡 ∈ {0, 1, . . . ,𝑇 }

The theoretical analysis of exactness, time complexity, and error

bound of the proposed EvePPR are expressed as follows.



WWW ’23, April 30-May 4, 2023, Austin, TX, USA Zihao Li et al.

Theorem 3.2 (Exactness of EvePPR). At each timestamp 𝑡 of
the fully dynamic setting, EvePPR outputs the exact personalized
PageRank vector 𝒗 (𝑡 ) that satisfies 𝒗 (𝑡 ) = 𝛼𝑷 (t)𝒗 (𝑡 ) + (1 − 𝛼)𝒉(𝑡 ) .

Proof. Firstly, according to the power iteration for solving 𝒒i
in the pre-computing phase,

𝒒𝑖 = 𝛼𝑷
(0)𝒒𝑖 + (1 − 𝛼)𝒆i ⇐⇒ 𝒒𝑖 = (1 − 𝛼)

∞∑
𝑘=0

(𝛼𝑷 (0) )𝑘𝒆𝑖 (4)

Then, in the tracking phase for timestamp 𝑡 , 𝒗
mid

is first figured

out as below,

𝒗
mid

= 𝑂𝑆𝑃 (v, 𝑷 (𝑡−1) , 𝑷 (𝑡 ) , 𝛼, 𝜖) = (1 − 𝛼)
∞∑
𝑘=0

(𝛼𝑷 (𝑡 ) )𝑘𝒉(𝑡−1) (5)

and when a certain 𝒒𝑖 is called, it will be updated as follows.

𝒒𝑖 = 𝑂𝑆𝑃 (𝒒𝒊,M[𝑖], 𝑷 (𝑡 ) , 𝛼, 𝜖) = (1 − 𝛼)
∞∑
𝑘=0

(𝛼𝑷 (𝑡 ) )𝑘𝒆𝑖 (6)

Assume 𝑙 seed nodes evolve, then the one-hot decomposition of

Δ𝒉 = 𝒉(t) − 𝒉(t−1) is rewritten as follows.

Δ𝒉 =

𝑙∑
𝑗=1

Δ𝒉( 𝑗)𝒆 𝑗 (7)

Finally, 𝒗 (𝑡 ) calculated by EvePPR is

𝒗 (t) = 𝒗
mid
+

𝑙∑
𝑗=1

Δ𝒉( 𝑗)𝒒 𝑗

= (1 − 𝛼)
∞∑
𝑘=0

(𝛼𝑷 (𝑡 ) )𝑘𝒉(𝑡−1) +
𝑙∑
𝑗=1

Δ𝒉( 𝑗) ((1 − 𝛼)
∞∑
𝑘=0

(𝛼𝑷 (𝑡 ) )𝑘𝒆 𝑗 )

= ((1 − 𝛼)
∞∑
𝑘=0

(𝛼𝑷 (𝑡 ) )𝑘 ) (𝒉(𝑡−1) +
𝑙∑
𝑗=1

Δ𝒉( 𝑗)𝒆 𝑗 )

= (1 − 𝛼)
∞∑
𝑘=0

(𝛼𝑷 (𝑡 ) )𝑘𝒉(𝑡 )

= (1 − 𝛼) (𝑰 − 𝛼𝑷 (𝑡 ) )−1𝒉(𝑡 )
(8)

Hence, 𝒗 (𝑡 ) = 𝛼𝑷 (t)𝒗 (𝑡 ) + (1 − 𝛼)𝒉(𝑡 ) gets proved for EvePPR. □

Theorem 3.3 (Time Complexity of EvePPR). At timestamp 𝑡 of
the fully dynamic setting, EvePPR outputting personalized PageRank
𝒗 (𝑡 ) costs𝑂 (𝑚(𝑙+1)𝑙𝑜𝑔𝛼𝜖), where𝑚 is the number of non-zero entries
of 𝑷 (𝑡 ) , 𝑙 is the number of non-zero entries of 𝒉(𝑡 ) , 𝜖 is the tolerance.

Proof. In a single OSP calculation, when 𝑷 (𝑡−1) is updated to

𝑷 (𝑡 ) , 𝒙 (𝑖)
offset

will be computed iteratively through 𝒙 (𝑖)
offset

= 𝛼𝑷 (𝑡 )𝒙 (𝑖−1)
offset

,

which takes 𝑂 (𝑚), where𝑚 is the number of non-zero entries in

𝑷 (𝑡 ) . OSP stopswhen the error tolerance is achieved, i.e., ∥𝒙 (𝑖)
offset
∥1 =

∥(𝛼𝑷 (𝑡 ) )𝑖𝒙 (0)
offset
∥1 = 𝛼𝑖 ∥(𝑷 (𝑡 ) )𝑖𝒙 (0)

offset
∥1 ≤ 𝜖 . In PageRank setting,

we have ∥𝑷 (𝑡 ) ∥1 ≤ 1, then 𝑖 = log𝛼
𝜖

∥𝒙 (0)
offset
∥1

suffices. ∥𝒙 (0)
offset
∥1 =

∥𝛼 (𝑷 (𝑡 ) − 𝑷 (𝑡−1) )𝒗 (𝑡 ) ∥1 ≤ 2𝛼 ∥𝒗 (𝑡 ) ∥1 Therefore, the number of it-

erations in one OSP is in𝑂 (log𝛼 𝜖), the time complexity of a single

OSP is in 𝑂 (𝑚 log𝛼 𝜖). EvePPR calls OSP 𝑙 + 1 times, where l is the

number of non-zero entries in Δ𝒉 = 𝒉(𝑡 ) − 𝒉(𝑡−1) . Therefore, the

number of iterations in one EvePPR is in 𝑂 ((𝑙 + 1) log𝛼 𝜖), and the

time complexity of EvePPR is in 𝑂 (𝑚(𝑙 + 1) log𝛼 𝜖). □

Theorem 3.4 (Error Bound of EvePPR in Practice). At times-
tamp 𝑡 in the fully dynamic setting, if OSP only works 𝑘 iterations, the
PageRank tracking error of EvePPR is bounded by 𝛼𝜖

1−𝛼 (1 + ∥Δ𝒉∥1),
with Δ𝒉 = 𝒉(𝑡 ) − 𝒉(𝑡−1) and 𝜖 is the tolerance.

Proof. Assume the OSP terminates at the 𝑘-th iteration, then

the remaining error 𝑂 (𝑒𝑟𝑟𝑜𝑟 𝑜 𝑓 𝑂𝑆𝑃) is expressed as follows.

𝑂 (𝑒𝑟𝑟𝑜𝑟 𝑜 𝑓 𝑂𝑆𝑃) ≤ ∥
∞∑

𝑖=𝑘+1
𝒙 (𝑖)
offset
∥1 ≤

∞∑
𝑖=𝑘+1

𝛼𝑖−𝑘 ∥𝒙 (𝑘)
offset
∥

≤
∞∑
𝑖=1

𝛼𝑖𝜖 =
𝛼𝜖

1 − 𝛼

(9)

Then, the error bound of EvePPR is

𝑂 (𝑒𝑟𝑟𝑜𝑟 ) ≤ 𝑂 (𝑒𝑟𝑟𝑜𝑟 𝑜 𝑓 𝑂𝑆𝑃) +
𝑙∑
𝑗=1

|Δ𝒉( 𝑗) |𝑂 (𝑒𝑟𝑟𝑜𝑟 𝑜 𝑓 𝑂𝑆𝑃)

=
𝛼𝜖

1 − 𝛼 (1 + ∥Δ𝒉∥1)
(10)

where 𝑗 denotes the index of non-zero entries in Δ𝒉. □

3.3 EvePPR Approximation: EvePPR-APP
EvePPR can track the personalized PageRank vector in the fully

dynamic setting with bounded effectiveness and time complexity.

However, EvePPR leverages OSP to do the intermediate tracking,

whose summation of matrices multiplication (i.e., Steps 4–5 in Algo-

rithm 1) is still time-consuming in practice, because we need to call

OSP multiple times for each varying seed node in each timestamp

(i.e., Step 12 in Algorithm 2). Therefore, we aim to find an approxi-

mation method of EvePPR, which can avoid calling OSP for each

varying seed node but still can track the multi-source personalized

PageRank vector in the fully dynamic setting.

Algorithm 3 EvePPR-APP

Input: previous and current transition matrix 𝑷 (𝑡−1) and 𝑷 (𝑡 ) ,
previous and current stochastic vector𝒉(𝑡−1) and𝒉(𝑡 ) , damping

factor 𝛼 , error tolerance 𝜖 , previous PageRank vector 𝒗 (𝑡−1)

Output: approximated current PageRank vector 𝒗 (𝑡 )

1: 𝒗
mid
←− 𝑂𝑆𝑃 (𝒗 (𝑡−1) , 𝑷 (𝑡−1) , 𝑷 (𝑡 ) , 𝛼, 𝜖)

2: Set 𝑘 = 0, 𝒙 (𝑘) = 𝒗
mid

, 𝒓 (𝑘) = (1 − 𝛼)𝒉(𝑡 ) − (𝑰 − 𝛼𝑷 (𝑡 ) )𝒗
mid

3: while ∥𝒓 (𝑘) ∥∞ > 𝜖 do
4: Denote the largest absolute value in 𝒓 (𝑘) as 𝑟 (𝑘)

𝑖

5: 𝒙 (𝑘+1) = 𝒙 (𝑘) + 𝑟 (𝑘)
𝑖

𝒆𝑖
6: 𝒓 (𝑘+1) = (1 − 𝛼)𝒉(𝑡 ) − (𝑰 − 𝛼𝑷 (𝑡 ) )𝒙 (𝑘+1)
7: 𝑘 + = 1

8: end while
9: Return: 𝒗 (𝑡 ) = 𝒙 (𝑘)

To this end, we develop EvePPR-APP that utilizes the logic of

Gaussian-Southwell method [25]. To be specific, for each unstable

personalized PageRank vector 𝒗 ′, we will keep a residual vector 𝒓
that records the divergence between 𝒗 ′ and the stably distributed

PageRank vector 𝒗. By pushing out the largest entry of 𝒓 to 𝒗 ′
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iteratively, 𝒗 ′ approaches 𝒗. In general, this push operation avoids

the continuous multiplication of matrices but only needs the multi-

plication between the matrix and vector. Thus, the computational

complexity is saved. The details are illustrated in Algorithm 3.

Theorem 3.5 (Time Complexity of EvePPR-APP). At times-
tamp 𝑡 of the fully dynamic setting, EvePPR-APP outputting the ap-
proximated personalized PageRank vector 𝒗 (𝑡 ) costs 𝑂 (𝑚 log𝛼 𝜖 +
𝑛( (1+𝛼)𝛼(1−𝛼)2 +

∥Δ𝒉 ∥1
𝜖 )), where𝑚 is the number of non-zero entries of

𝑷 (𝑡 ) , Δ𝒉 = 𝒉(𝑡 ) − 𝒉(𝑡−1) , and 𝜖 is the tolerance.
Proof. Calling OSP takes 𝑂 (𝑚 log𝛼 𝜖), as analysed in Theorem

3.3, where𝑚 is the number of non-zero entries in 𝑷 (𝑡 ) . Then EvePPR
decreases the residual vector 𝒓 for the varying stochastic vector 𝒉,
which can be proven as a form of Gauss-Southwell [25].

𝒓 (𝑘+1) = (1 − 𝛼)𝒉(𝑡 ) − (𝑰 − 𝛼𝑷 (𝑡 ) )𝒙 (𝑘+1)

= (1 − 𝛼)𝒉(𝑡 ) − (𝑰 − 𝛼𝑷 (𝑡 ) ) (𝒙 (𝑘) + 𝑟𝑘𝑖 𝒆𝑖 )

= 𝒓 (𝑘) − 𝑟 (𝑘)
𝑖

𝒆𝑖 + 𝛼𝑟𝑘𝑖 𝑷
(𝑡 ) 𝒆𝑖

= 𝒓 (𝑘) − 𝑟 (𝑘)
𝑖

𝒆𝑖 + 𝛼𝑟𝑘𝑖 𝑷
(𝑡 )
𝑖

(11)

where 𝑷 (𝑡 )
𝑖

is the 𝑖-th column of 𝑷 (𝑡 ) .
In each iteration 𝑘 , the 𝑖-th entry of 𝒓 (k) is set to be 0 at first,

and then adds 𝛼𝑟𝑘
𝑖
𝑷 (𝑡 )
𝑖

. Since we have ∥𝑷 (𝑡 )
𝑖
∥1 ≤ 1, then we have

∥𝒓 (𝑘) ∥1 − ∥𝒓 (𝑘+1) ∥1 ≥ (1 − 𝛼 ∥𝑷 (𝑡 )𝑖 ∥1)𝑟
(𝑘)
𝑖

≥ (1 − 𝛼)𝜖
(12)

Therefore, the while-loop in Algorithm 3 will terminate within

∥𝒓 (0) ∥1
(1−𝛼)𝜖 number of iterations.

∥𝒓 (0) ∥1
(1 − 𝛼)𝜖 =

∥(1 − 𝛼)𝒉(𝑡 ) − (𝑰 − 𝛼𝑷 (𝑡 ) )𝒗
mid
∥1

(1 − 𝛼)𝜖

=
∥(1 − 𝛼) (𝒉(𝑡−1) + Δ𝒉) − (𝑰 − 𝛼𝑷 (𝑡 ) )𝒗

mid
∥1

(1 − 𝛼)𝜖

≤ ∥(1 − 𝛼)𝒉
(𝑡−1) − (𝑰 − 𝛼𝑷 (𝑡 ) )𝒗

mid
∥1 + ∥(1 − 𝛼)Δ𝒉∥1

(1 − 𝛼)𝜖
(13)

According to the error bound of OSP analysed in Theorem 3.4,

𝒗
mid

differs from 𝒗 (𝑡 ) for at most
𝛼𝜖
1−𝛼 , then we have the bound for

∥𝒓 (0) ∥1
(1−𝛼)𝜖 as follows.

∥𝒓 (0) ∥1
(1 − 𝛼)𝜖 ≤

∥(𝑰 − 𝛼𝑷 (𝑡 ) ) 𝛼𝜖
1−𝛼 ∥1 + ∥(1 − 𝛼)Δ𝒉∥1
(1 − 𝛼)𝜖

≤
(1 + 𝛼) 𝛼

1−𝛼
(1 − 𝛼) + ∥Δ𝒉∥1

𝜖

=
(1 + 𝛼)𝛼
(1 − 𝛼)2

+ ∥Δ𝒉∥1
𝜖

(14)

For each iteration, the time complexity is 𝑂 (𝑛). So the total time

complexity of EvePPR-APP is below.

𝑂 (EvePPR-APP) = 𝑂 (𝑚 log𝛼 𝜖) +𝑂 (𝑛(
(1 + 𝛼)𝛼
(1 − 𝛼)2

+ ∥Δ𝒉∥1
𝜖
))

= 𝑂 (𝑚 log𝛼 𝜖 + 𝑛(
(1 + 𝛼)𝛼
(1 − 𝛼)2

+ ∥Δ𝒉∥1
𝜖
))

(15)

□

Theorem 3.6 (Error Bound of EvePPR-APP in Practice). At
timestamp 𝑡 in the fully dynamic setting, the PageRank tracking error
of EvePPR-APP is bounded by 𝑛𝜖

1−𝛼 , where 𝜖 is the tolerance.

Proof. At timestamp 𝑡 , let 𝒗 (𝑘) denote the tracked result from

EvePPR-APP, 𝒗 denote the exact PageRank vector, 𝒓 (𝑘) and 𝒓 denote

their residues respectively. When EvePPR-APP terminates,

���𝑟 (𝑘)𝑖

��� ≤
𝜖 , ∀ 𝑖 ∈ {1, . . . , 𝑛}. Therefore, ∥𝒓 − 𝒓 (𝑘) ∥1 ≤ 𝑛𝜖 , and we can have

∥𝒗 − 𝒗 (𝑘) ∥1 ≤ ∥(𝑰 − 𝛼𝑷 (𝑡 ) )−1∥1 ∥𝒓 − 𝒓 (𝑘) ∥1

= ∥
∞∑
𝑖=0

(𝛼𝑷 (𝑡 ) )𝑖 ∥1 ∥𝒓 − 𝒓 (𝑘) ∥1

≤
∞∑
𝑖=0

∥(𝛼𝑷 (𝑡 ) )𝑖 ∥1 ∥𝒓 − 𝒓 (𝑘) ∥1

≤
∞∑
𝑖=0

𝛼𝑖 ∥𝒓 − 𝒓 (𝑘) ∥1 ≤
∞∑
𝑖=0

𝛼𝑖𝑛𝜖 =
𝑛𝜖

1 − 𝛼

(16)

□
Theoretically, as the cost of speeding up the computation, the

one-norm error bound of EvePPR-APP is larger than that of EvePPR.

EvePPR-APP shares the same error scale with the strong baseline

Gauss-Southwell [25], and empirically we can assign 𝜖 a small scalar

to reduce the side-effect brought by n.

3.4 Empirical Evaluation of EvePPR
After proving EvePPR theoretically, we now empirically verify

both tracking effectiveness and efficiency with previous PageRank

methods in a real-world dataset MathOverflow [26]. This widely-

used network dataset is dynamics and has 24,818 nodes and 506,550

edges. We then choose OSP [42] and Gauss-Southwell [25] as two

state-of-the-art baseline methods to track PageRank dynamically.

Figure 2: Tracking Error and Running Time of Different
PageRank Algorithms in MathOverflow Network.

Scenario: Starting from the 100, 000-th edge
1
, we aggregate

20,000 edges for each timestamp. We calculate an exact single-

source PageRank vector when the graph has the first 100, 000 edges.

Then for each following timestamp, we update the transition matrix

according to the newly added edges. As for the stochastic vector,

we let the seed node pass sequentially (i.e., seed node is 𝑖 at 𝑡

and 𝑖 + 1 at 𝑡 + 1). We evaluate the L2-norm tracking error and

running time of each method on each timestamp. After tracking 5

1
In MathOverflow, edges from approximately the 300, 000-th are just identically re-

peating with different timestamps
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timestamps, the average tracking error and running time are shown

in Figure 2. The lower L2-norm error stands for the higher tracking

accuracy between two PageRank vectors (i.e., the tracked PageRank

v.s. the ground-truth PageRank by power iterations), and the lower

running time stands for higher computational efficiency. It can be

seen that EvePPR outperforms Gauss-Southwell on both accuracy

and efficiency, while EvePPR-APP can achieve similar performance

to Gauss-Southwell. Compared to OSP, EvePPR outperforms OSP

on the accuracy, with a slight sacrifice on running time.

4 KNOWLEDGE GRAPH ALIGNMENT
Knowledge graph alignment, i.e., searching node correspondence

(or similarity) across knowledge graphs, has a wide application on

web mining, social network analysis, question answering, protein-

protein interaction prediction, etc [11, 23, 36, 37, 46, 50]. To be

specific, given the adjacency matrices, node attributes, and edge

attributes of two knowledge graphs, retrieving one-to-one node

pair between two knowledge graphs is the main goal [46].

4.1 Static Knowledge Graph Alignment
StaticAlignment SolutionusingPersonalizedPageRank. Given
two graphs G1 = {𝑨1,𝑵1, 𝑬1} and G2 = {𝑨2,𝑵2, 𝑬2}, where 𝑨, 𝑵 ,

𝑬 stands for adjacency matrix, node attribute matrix (i.e., 𝑵 (𝑎, 𝑎)
is attribute of node 𝑎), and edge attribute matrix (i.e., 𝑬 (𝑎, 𝑏) is
attribute of edge 𝑎𝑏), respectively. 𝑛1 (or 𝑛2) is the number of

nodes in graph G1 (or G2). The similarity-based alignment solution

𝒔 ∈ R𝑛1𝑛2 [46] can be rewritten in the following form.

𝒔 = 𝛼�̃�𝒔 + (1 − 𝛼)𝒉 (17)

where �̃� = 𝑫−
1

2 𝑵 (𝑬 ⊙ (𝑨1 ⊗ 𝑨2))𝑵𝑫−
1

2 . Suppose we have 𝐾

node attributes and 𝐿 edge attributes in total (i.e., 𝑵𝑘
𝑖
(𝑎, 𝑎) = 1

denotes that node 𝑎 in G𝑖 has the attribute 𝑘 , and 𝑬𝑙
𝑖
(𝑎, 𝑏) = 1

denotes edge 𝑎𝑏 in G𝑖 has attribute 𝑙), then the corresponding

matrices are 𝑵 =
∑𝐾
𝑘=1

𝑵𝑘
1
⊗ 𝑵𝑘

2
and 𝑬 =

∑𝐿
𝑙=1

𝑬𝑙
1
⊗ 𝑬𝑙

2
. Matrix

𝑫 = 𝑑𝑖𝑎𝑔(∑𝐾
𝑘,𝑘′=1

∑𝐿
𝑙=1
(𝑵𝑘

1
(𝑬𝑙

1
⊙𝑨1)𝑵𝑘′

1
1)⊗ (𝑵𝑘

2
(𝑬𝑙

2
⊙𝑨2)𝑵𝑘′

2
1))

is the diagonal degree matrix of𝑾 = 𝑵 (𝑬 ⊙ (𝑨1 ⊗ 𝑨2))𝑵 .

Eq. 17 is in the same form of Eq. 1, if we concatenate two knowl-

edge graphs together. Each entry of 𝒔 ∈ R𝑛1𝑛2 represents the simi-

larity score of a node pair across the two graphs. Then we apply a

heuristic greedy match algorithm [17] to obtain the final alignment

based on the ranking, i.e., similarity vector 𝒔.

4.2 Fully Dynamic Setting and Solution
Evolving Elements. In real world, one challenge on knowledge

graph alignment is that, the graphs are changing from time to

time, but recomputing the alignment solution from scratch is time

consuming. There are many kinds of changes that can occur, mak-

ing the graph alignment task even more complex. For instance, in

the LinkedIn knowledge graph, a user can start following some-

one (edge insertion), change his or her occupation (node attribute

change), become CEO of a company from employee (edge attribute

change), or change his or her username (prior knowledge change).

A good prior knowledge (or pre-knowledge) about pre-aligned an-

chors across knowledge graphs is important for the alignment task,

because it reduces the alignment search space for improbable nodes

and strengthens the alignment between the nodes that seem to be

Algorithm 4 Construct Prior Knowledge

Input: the candidate set information of all the nodes in G1
Output: the prior knowledge vector 𝒉 for graph alignment

1: set 𝒉 = 0
2: for 𝑖 = 0, 𝑖 < 𝑛1; 𝑖 + + do
3: 𝑤𝑒𝑖𝑔ℎ𝑡 = 1

𝑛1 |𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖) |
4: 𝑖𝑛𝑑𝑒𝑥 = 𝑖 ∗ 𝑛2
5: for 𝑗 = 0, 𝑗 < 𝑛2, 𝑗 + + do
6: if 𝑗 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖) then
7: 𝒉(𝑖𝑛𝑑𝑒𝑥 + 𝑗) = 𝑤𝑒𝑖𝑔ℎ𝑡
8: end if
9: end for
10: end for
11: Return: 𝒉

from the same entity. For dynamic networks, the pre-knowledge

is important to be dynamic as well, since the networks are able to

change so many times that any starting static pre-knowledge will

become distorted.

Prior Knowledge Encoding and Tracking. We use filtering

methods to dynamically update the pre-knowledge encoded in the

stochastic vector 𝒉(𝑡 ) . We propose two specific filters to update the

pre-knowledge after any changes mentioned above happen in the

two knowledge graphs. The purpose of such filtering is to assign

higher prior weights to the pairs of nodes (that seem similar to

those that seem not, based on direct information given by graphs)

to reduce the search space. We set 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 to record the possible

candidates of alignment. For example, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑎) returns the list
of all possible nodes in G2 that are alignment candidates of node 𝑎

in G1. At the initial timestamp, we set 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑎) to be all nodes

in G2 for any node 𝑎 in G1, then use the following two existing

filters sequentially to renew 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒:

• Node Attribute Filter: This filter comes from the intuition that,

if two nodes, say node 𝑎 in graph G1 and node 𝑥 in graph G2 are
similar, they must at least have the same node attributes. In other

words, 𝑥 ∉ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑎) ⇐ 𝑵1 (𝑎, 𝑎) ≠ 𝑵2 (𝑥, 𝑥). An example of

this would be, the same user’s LinkedIn account and Facebook

account should show the same occupation.

• One-hop Filter: This filter comes from the intuition that, if

two nodes are similar, they should have similar neighbors. We

measure this using the (neighbor attribute, connecting edge at-

tribute) pairs. For node 𝑎 in G1 and node 𝑥 in G2, the trigger

condition of filtering 𝑥 out of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑎) is, if 𝑎 has a neigh-
bor 𝑏 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑎) with an edge 𝑎𝑏 between them, but 𝑥 does

not have such a neighbor 𝑦 in G2 that satisfies: the attribute

of 𝑦 is the same as 𝑏, and the attribute of edge 𝑥𝑦 is the same

as edge 𝑎𝑏. In other words, 𝑥 ∉ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑎) ⇐ ∃𝑏 ∈ G1 s.t.

∀𝑦 ∈ G2, (𝑵1 (𝑏,𝑏), 𝑬1 (𝑎, 𝑏)) ≠ (𝑵2 (𝑦,𝑦), 𝑬2 (𝑥,𝑦)).
An advantage of such a design is, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 can be quickly up-

dated when an edge is inserted/deleted, a node attribute is changed,

or an edge attribute is changed. Due to the limitation of space, we

discuss fast updating of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 in Appendix D.

After getting the correct 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 for each timestamp, we dis-

tribute the alignment probability uniformly among the candidates

of a node. Algorithm 4 shows how to compute the prior knowl-

edge from 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 , assuming G1 and G2 have 𝑛1 and 𝑛2 nodes
respectively and the node index are from 0 to 𝑛1 − 1 or 𝑛2 − 1.
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5 EXPERIMENTS
5.1 Datasets
The real-world temporal networks (or graphs)

2
are summarized

in Table 2, which are used to compare the effectiveness and effi-

ciency of the proposed EvePPR and EvePPR-APP with other state-

of-the-art baseline methods. We employ three real-world temporal

networks after necessary preprocessing. MovieLens-1M [20] is a

bipartite network containing one million movie ratings, where an

edge between a user and a movie shows which level the user rates

the movie. Bitcoin Alpha [19, 20] is a user-user trust/distrust net-

work from the Bitcoin Alpha platform, where each edge is labeled

from -10 to +10, indicating the trust level between users. WikiLens

[5, 20] is also a bipartite rating network, where an edge represents

a rating. To demonstrate the effectiveness of EvePPR and EvePPR-

APP on node attribute changes and edge attribute changes, we

extract synthetic temporal networks with such changes on each of

the three real-world datasets mentioned.

Table 2: Statistics of Real-World Graphs

Graphs Format |V| |E| Time Span

MovieLens-1M Bipartite 9,746 1,000,209 35 months

Bitcoin Alpha Unipartite 3,783 24,186 64 months

WikiLens Bipartite 5,437 26,937 46 months

5.2 Baselines
We choose several state-of-the-art methods for graph alignment

as the baselines of our experiments. We compare static attributed

network alignment algorithm (FINAL [46]), dynamic attributed

subgraph matching algorithm based on eigenvalue decomposition

(FIRST [4]), dynamic knowledge graph alignment based on graph

neural networks (DINGAL [36]), dynamic randomwalk with restart

based on offset score propagation (OSP [42]), together with our

EvePPR and EvePPR-APP. Moreover, we provide two self-ablation

comparisons to validate the effectiveness of our methods and the

necessity of allowing stochastic vector to change in Appendix C.

5.3 Experimental Setting
Before doing the experiments, we notice the following issues and

remedy by preprocessing and extracting. (1) MovieLens-1M and

WikiLens have only 2 node attributes: user and ratee. Changing a

node from a user to a ratee or vice versa will destroy the bipartite

structure of the network. As for Bitcoin Alpha, it has only one node

attribute, hence the node attribute change is impossible to occur.

(2) There is only one network in each dataset, but we need two

networks to do graph alignment.

Preprocessing. We process all time-evolving networks as undi-

rected. To assign the node attribute, we further classify the nodes in

each dataset based on their degrees. Additionally, for the WikiLens

dataset, whose edge label can be an integer plus a half, we multiply

all the edge labels by two to avoid non-integer edge attribute.

Extract the query graph. For each dataset, we extract an amount

of nodes and the edges between them, i.e., a temporal subgraph of

the original temporal network, to form the query network. The size

of the extracted query graph of each dataset can be found in Table

3. Since we are actually tracking similarities between node pairs,

2
In experiments, we call "network" and "graph" interchangeably.

the scale of personalized PageRank tracking is the multiplication

of numbers of nodes in the original graph and the query graph,

i.e., 877,140, 378,300, 815,550 for MovieLens-1M, Bitcoin Alpha,

WikiLens respectively.

Table 3: Statistics of Extracted Query Graphs

Extracted Subgraphs Format |V| |E|

MovieLens-1M Bipartite 90 375

Bitcoin Alpha Unipartite 100 423

WikiLens Bipartite 150 553

Knowledge Graph Alignment Evaluation Metric. The net-
work alignment task is, for a certain dataset, to find the best align-

ment of the extracted query graph in the original network. The

alignment accuracy is defined to be the portion of nodes in the

query graph whose top 𝑘 alignment of its ranking list (i.e., a list

consisting of nodes in the original graph, sorted by the similarity)

contains the ground-truth [46]. In experiments, we set 𝑘 = 1. Also,

we set three dynamic network alignment scenarios as follows. In

each scenario, we allow the query graph and the original graph to

evolve simultaneously.

• Edge Insertion
3
: For MovieLens-1M and Bitcoin Alpha datasets,

we take the first-occurred 90% of edges as the initial network to

start tracking. For WikiLens, this ratio is 20%. When an edge is

inserted in the original network and the insertion position is in

the scope of the extracted query network, we also add that edge

into the query network.

• Node Attribute Change: For each dataset, we randomly extract

a sequence of nodes and change their attributes. We take the

last timestamp networks in the Edge Insertion scenario as the

starting networks, then apply node attribute changes with other

properties (i.e., graph structures, edge attributes) unchanged.

• Edge Attribute Change: For each dataset, we randomly extract a

sequence of edges and change their attributes. Same to the Node

Attribute Change scenario, we take the last time networks in

Edge Insertion scenario as the starting networks. If an edge to

be changed is in both original and query networks, we change

the attribute of that edge in both networks.

When a change occurs in the extracted query network, we mark

a timestamp and activate the tracking methods. The numbers of

timestamps for the three datasets in the edge insertion scenario are

187, 39, 33, respectively. For each timestamp, we first update the

transition matrix and stochastic (prior knowledge) vector, and then

apply the tracking methods. All the experiments run on a single

Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz
4
.

5.4 Effectiveness Comparison
We evaluate the performance of EvePPR and EvePPR-APP by com-

paring their alignment accuracy with other baselines. We uniformly

choose some timestamps and calculate the mean and standard devi-

ation of the accuracy at those timestamps. The experiment results

are illustrated in Figure 3. First, both EvePPR and EvePPR-APP

outperform the existing baseline methods on accuracy in all scenar-

ios. Second, EvePPR-APP can achieve closely but not as accurate

3
Moreover, an edge-deletion scenario is illustrated in Appendix B plus graph alignment

baseline algorithms.

4
https://github.com/DongqiFu/EvePPR

https://github.com/DongqiFu/EvePPR
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(a) Edge Insertion (b) Node Attribute Change (c) Edge Attribute Change

Figure 3: Alignment Accuracy under Three Dynamic Scenarios

as EvePPR, validating that EvePPR can track exact personalized

PageRank vector when the transition matrix and stochastic vector

change simultaneously. In the following section, we will compare

the efficiency of methods and show that EvePPR-APP is a good

trade-off between accuracy and efficiency. Third, the accuracy on

node attribute change scenario and edge attribute change scenario

is higher than edge insertion scenario. This is because the attribute

change scenarios start from the final network of edge insertion

scenario, and hence they have more information to use.

5.5 Efficiency Analysis
We measure the time consumption of each method computing the

tracking solution in the edge insertion scenario. We record the

mean and standard deviation of sampled timestamps in Table 4.

EvePPR-APP and EvePPR outperform FINAL and FIRST, but is not

as fast as OSP, because OSP does not take any consideration on

stochastic vector change. EvePPR-APP is about 4 times slower than

OSP, but it can handle more complex dynamic changes. The reason

why the executing time of EvePPR has a considerable standard

deviation is that, the numbers of changed entries in the stochastic

(prior knowledge) vector vary largely among timestamps, and theo-

retically the tracking time of EvePPR is proportional to the number

of changed entries.

Table 4: Efficiency Comparison (unit: seconds)
Methods MovieLens-1M Bitcoin Alpha WikiLens

FINAL 41.677±0.703 11.904±0.075 20.171±1.199
FIRST 29.537±5.355 157.581±22.596 369.695±320.471
OSP 0.0212±0.002 0.0108±0.002 0.0201±0.003
EvePPR-APP 0.0737±0.013 0.0410±0.010 0.0920±0.043
EvePPR 11.9296±34.967 7.8602±12.965 0.8973±2.230

6 RELATEDWORK
PageRank Tracking. The PageRank algorithm has wide applica-

tions in many domains such as web mining [30], anomaly detec-

tion [39, 41], and urban network ranking [2, 16]. Many variants

of PageRank have been proposed. For example, in [31] the au-

thors develop PageRank for temporal graphs based on temporal

random walk; in [14] the authors provide a way to audit element

importance based on their influence; in [35] the authors design

vertex-diminished random walk for imbalanced networks. Math-

ematically, an exact tracking for PageRank can be done based on

tracking the inverse matrix from Shermon-Morrison Lemma [28],

but the computation is costly unaffordable in practice. To trade-off

between accuracy and efficiency, somemethods have been proposed

to approximate the partial dynamic PageRank vector of temporal

graph [3, 25, 42, 44]. Graph Alignment. Much work has been de-

voted to the graph alignment problem, including incomplete graph

alignment [47], bipartite graph alignment [18], dynamic graph align-

ment [22], multiple network alignment [34, 45] and so on. Besides

the methods used in our experiment, COSNET [48] considers both

local and global consistency among multiple networks while align-

ing; SimRank [12] finds node similarities which can be used for

graph alignment, via graph-theory approach, and later a fast algo-

rithm for computing SimRank is proposed in [21]. There are also

neural-network-based solutions such as [11, 36, 40]. To the best of

our knowledge, we first propose personalized PageRank tracking

in the fully dynamic setting, which allows the transition matrix and

stochastic vector to evolve simultaneously. We demonstrate that

the fully dynamic setting can contribute to the dynamic knowledge

graph alignment task by simulating the more complex evolving real-

world environment. According to [29], the dynamics in real-world

graphs or networks are usually complex and complicated. In our

experiments, based on real-world dynamic datasets, we build and

simulate more dynamic scenarios like node attribute changes and

edge attribute changes. In the meantime, we look forward to and

would like to devote ourselves to discovering real-world datasets

that support complex dynamic scenarios.

7 CONCLUSION
In this paper, we first propose the personalized PageRank tracking

method in the fully dynamic setting (i.e., both transition matrix

and stochastic vector evolve), named EvePPR. We also prove the

tracking accuracy, time complexity of EvePPR and its approxima-

tion method EvePPR-APP. Then we find that using PageRank in

the fully dynamic setting can well address the dynamic knowledge

graph alignment problem, and we design extensive experiments to

show the outperformance of EvePPR with baseline methods.
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A PROOF OF THEOREM 3.1
According to [43], the personalized PageRank can be rewritten in

the form of infinite summation as follows.

𝒗 = 𝛼𝑷𝒗 + (1 − 𝛼)𝒉 ⇐⇒ 𝒗 = (1 − 𝛼) (𝑰 − 𝛼𝑷 )−1𝒉

⇐⇒ 𝒗 = (1 − 𝛼)
∞∑
𝑖=0

(𝛼𝑷 )𝑖𝒉

According to [42], 𝑂𝑆𝑃 (𝒗 (𝑡−1) , 𝑷 (𝑡−1) , 𝑷 (𝑡 ) , 𝛼, 𝜖) is as follows.
𝑂𝑆𝑃 (𝒗 (𝑡−1) , 𝑷 (𝑡−1) , 𝑷 (𝑡 ) , 𝛼, 𝜖)

=

∞∑
𝑗=0

((𝛼𝑷 (𝑡 ) ) 𝑗𝛼 (𝑷 (𝑡 ) − 𝑷 (𝑡−1) ) (1 − 𝛼)
∞∑
𝑖=0

(𝛼𝑷 (𝑡−1) )𝑖𝒉) + 𝒗 (𝑡−1)

= (1 − 𝛼)
∞∑
𝑗=0

(𝛼𝑷 (𝑡 ) ) 𝑗 (𝛼𝑷 (𝑡 ) − 𝛼𝑷 (𝑡−1) )
∞∑
𝑖=0

(𝛼𝑷 (𝑡−1) )𝑖𝒉 + 𝒗 (𝑡−1)

= (1 − 𝛼) (
∞∑
𝑗=1

(𝛼𝑷 (𝑡 ) ) 𝑗
∞∑
𝑖=0

(𝛼𝑷 (𝑡−1) )𝑖 −
∞∑
𝑗=0

(𝛼𝑷 (𝑡 ) ) 𝑗
∞∑
𝑖=1

(𝛼𝑷 (𝑡−1) )𝑖 )𝒉 + 𝒗 (𝑡−1)

= (1 − 𝛼) (
∞∑
𝑗=1

(𝛼𝑷 (𝑡 ) ) 𝑗 (𝑰 +
∞∑
𝑖=1

(𝛼𝑷 (𝑡−1) )𝑖 ) − (𝑰 +
∞∑
𝑗=1

(𝛼𝑷 (𝑡 ) ) 𝑗 )
∞∑
𝑖=1

(𝛼𝑷 (𝑡−1) )𝑖 )𝒉 + 𝒗 (𝑡−1)

= (1 − 𝛼) (
∞∑
𝑗=1

(𝛼𝑷 (𝑡 ) ) 𝑗 −
∞∑
𝑖=1

(𝛼𝑷 (𝑡−1) )𝑖 )𝒉 + 𝒗 (𝑡−1)

= (1 − 𝛼) (
∞∑
𝑗=0

(𝛼𝑷 (𝑡 ) ) 𝑗 −
∞∑
𝑖=0

(𝛼𝑷 (𝑡−1) )𝑖 )𝒉 + (1 − 𝛼)
∞∑
𝑖=0

(𝛼𝑷 (𝑡−1) )𝑖𝒉

= (1 − 𝛼)
∞∑
𝑖=0

(𝛼𝑷 (𝑡 ) )𝑖𝒉

= (1 − 𝛼) (𝑰 − 𝛼𝑷 (𝑡 ) )−1𝒉

= 𝒗 (𝑡 )

B EDGE DELETION EXPERIMENT
The edge deletion experiment is executed in Bitcoin Alpha dataset.

Figure 4: Alignment Accuracy and Running Time.

Edge Deletion: We take the last timestamp networks in Edge

Insertion scenario as the starting networks. Then we delete 10%

of all edges appeared in the original graph from all previous 32

timestamps.When an edge is deleted in the original network and the

deletion position is in the extracted query network, we also delete

that edge in the query network. Following the same experimental

setting in Section 5, the performance of alignment accuracy w.r.t

running time is shown in Figure 4.

C ABLATION STUDY
Here, we design two ablation studies. Ablation study I (shown in

Figure 5(a)) compares performance between the given uniform prior

knowledge and our filtered prior knowledge at each timestamp,

which shows the effectiveness of our proposed filters. Ablation

study II (shown in Figure 5(b)) compares EvePPR with EvePPR-

notracking, where EvePPR-notracking removes the functionality of

updating prior knowledge changes in 𝒉, i.e., identical to OSP which

only allows transition matrix to change.

(a) Uniform Prior Knowledge and Filtered Prior Knowledge

(b) Tracking Prior Knowledge and Not Tracking Prior Knowledge

Figure 5: Ablation Study
For both ablation studies, we take the initial and first 20 times-

tamps in edge insertion scenario as the dynamic setting. EvePPR-

static computes the transition matrix and initial PageRank vector

in the same way as EvePPR. Changing the prior knowledge from

the filtered knowledge into a uniform distribution, an obvious drop

occur on each dataset. This shows that our proposed filter can give

much better prior knowledge than uniform distribution. In abla-

tion study II, we give the uniform prior knowledge at timestamp

0, and give the filtered prior knowledge later on. It turns out that

EvePPR-notracking cannot take advantage of the better input pre-

knowledge from timestamp 1, but EvePPR can "recover" from the

initial low accuracy very quickly.

D FAST UPDATE OF PRIOR KNOWLEDGE
In order to achieve fast update of the filtering result, we need a

matrix to record the filtering information. Let 𝑭 to be an 𝑛2 × 𝑛1
matrix, where 𝑭 ( 𝑗, 𝑖) will be used to record which (NodeAttribute,

EdgeAttribute) filtered node 𝑗 in G2 away from 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖), the
candidate set of 𝑖 in G1. If 𝑗 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖), 𝑭 ( 𝑗, 𝑖) should be 𝑛𝑜𝑛𝑒 .

We first introduce the recovering methods, which is an inverse pro-

cess of filtering: for 𝑥 ∉ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑎), recoveringmethod will check

if 𝑥 can be a candidate of 𝑎 again. We configure the one-hot filter

function to return the filtering pair if one_hop_filter(𝑥, 𝑎) filters 𝑥
out of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑎) , or 𝑛𝑜𝑛𝑒 otherwise. This ensures that 𝑭 (𝑥, 𝑎)
will be updated after executing 𝑟𝑒𝑐𝑜𝑣𝑒𝑟 (𝑥, 𝑎). When a change occur,



Everything Evolves in Personalized PageRank WWW ’23, April 30-May 4, 2023, Austin, TX, USA

(a) node attribute change (b) edge attribute change (c) edge insertion (d) edge deletion

Figure 6: Fast Update of Prior Knowledge

react according to which type the change is and where the change

occurs, as described as follows.

D.1 Change of Node Attribute
Change in G1. When an attribute of a node in G1 is changed, say
node 𝑖 in G1 is changed from attribute 𝑘1 to 𝑘2. As an immediate

consequence, we need to udpate 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖) using node attribute

filter and 𝑟𝑒𝑐𝑜𝑣𝑒𝑟 function. Then, as for the one-hop neighbor con-

dition, we need to consider the neighbors of 𝑖 . Let𝑢 to be a neighbor

of 𝑖 , then for the nodes in G2 that are candidates of 𝑢, we need to

check if they have the neighbor pair (𝑵1 (𝑖, 𝑖), 𝑬1 (𝑖, 𝑢)).
For a node 𝑣 in G2 that is not a candidate of 𝑢, if (𝑘1, 𝑬1 (𝑖, 𝑢)) ≠

𝑭 (𝑣,𝑢), this means the previous filtering pair of one-hop filter is

not changed and still works on 𝑣 . Then 𝑣 still should be filtered

from 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑢). Nothing should be changed in this case. If

(𝑘1, 𝑬1 (𝑖, 𝑢)) == 𝑭 (𝑣,𝑢), then it is possible that 𝑣 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑢),
hence it is necessary to check this by the 𝑟𝑒𝑐𝑜𝑣𝑒𝑟 (𝑣,𝑢).

For a node 𝑣 in G that is a candidate of 𝑢, the additional work

would be to check that 𝑣 has neighbor pair (𝑘2, 𝑬1 (𝑖, 𝑢)). if 𝑣 has,
then 𝑣 can still be a candidate of 𝑢. But if 𝑣 does not, it needs to be

removed from 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑢).
Change in G2. When an attribute of node in G2 is changed, say
node 𝑗 in G2 is changed from attribute 𝑘1 to 𝑘2. Similar to the above

analysis, we need to first update the candidate information on all

the nodes in G1 with 𝑗 . Then, we need to reconsider the neighbors

of 𝑗 . Take 𝑣 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ( 𝑗) as an example:

For a node 𝑢 in G1 such that 𝑣 ∉ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑢), check whether

(𝑘2, 𝑬2 ( 𝑗, 𝑣)) == 𝑭 (𝑣,𝑢). If so, then it is possible that 𝑣 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑢)
now, hence we should check this by 𝑟𝑒𝑐𝑜𝑣𝑒𝑟 (𝑣,𝑢).

For a node 𝑢 in G1 such that 𝑣 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑢), check if "𝑣 does

not have another neighbor pair (𝑘1, 𝑬2 ( 𝑗, 𝑣)) & 𝑢 has neighbor

pair (𝑘1, 𝑬2 ( 𝑗, 𝑣))". If so, filter 𝑣 out of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑢).
D.2 Change of Edge Attribute
A change that only refers to edge attribute will not trigger the

recovery condition about the node attribute filter, but just the one-

hop filter.

Change in G1. If edge 𝑖𝑢 in G1 is changed from attribute 𝑙1 to 𝑙2,

then we only need to reconsider nodes in G2 with node 𝑖 and node𝑢,
since other nodes in G1 are not related to this edge attribute change
according to the definition of the filters we are using. For nodes

in G2 that are candidates of 𝑖 , check if they have neighbor pair

Algorithm 5 recover(x, a)

Input: a node 𝑎 in G1, a node 𝑥 in G2
Output: check if 𝑥 should be recover back into 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑎). If so,

recover 𝑥 back to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑎)
1: if 𝑥 ∉ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑎) & 𝑵1 (𝑎, 𝑎) = 𝑵2 (𝑥, 𝑥) then
2: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑎) .𝑎𝑑𝑑 (𝑥)
3: 𝑭 (𝑥, 𝑎) ← 𝑜𝑛𝑒_ℎ𝑜𝑝_𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑥, 𝑎)
4: end if

(𝑵1 (𝑢,𝑢), 𝑙2). If any node does not have, filter it out of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖).
For node 𝑗 in G2 that are not candidates of 𝑖 , if (𝑵1 (𝑢,𝑢), 𝑙1) ==
𝑭 ( 𝑗, 𝑖), then it is possible that, after this change, 𝑗 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖),
hence we need to check this by 𝑟𝑒𝑐𝑜𝑣𝑒𝑟 ( 𝑗, 𝑖). After the operations
related to node 𝑖 , do similar things to update 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑢).
Change in G2. If edge 𝑗𝑣 in G2 is changed from attribute 𝑙1 to 𝑙2, we

only need to consider nodes in G1 with 𝑗 and 𝑣 , since other nodes
in G2 will not be affected. We take node 𝑗 first for example. For a

node 𝑖 in G1, if 𝑗 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖), check if " 𝑗 does not have another

neighbor pair (𝑵2 (𝑣, 𝑣), 𝑙1) & 𝑖 has neighbor pair (𝑵2 (𝑣, 𝑣), 𝑙1)".
If so, filter 𝑗 out of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖); if not, remain 𝑗 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖).
If 𝑗 ∉ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖), check if (𝑵2 (𝑣, 𝑣), 𝑙2) == 𝑭 ( 𝑗, 𝑖). If not, keep
𝑗 ∉ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖). But if so, check by the 𝑟𝑒𝑐𝑜𝑣𝑒𝑟 ( 𝑗, 𝑖).

D.3 Insertion or Deletion of An Edge
Change in G1. When an edge 𝑖𝑢 with attribute 𝑙 is inserted in

G1, check the candidates of 𝑖 and 𝑢. Take 𝑖 as an example. For

𝑗 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖), check if 𝑗 has a neighbor pair (𝑵1 (𝑢,𝑢), 𝑙). If
not, filter 𝑗 out of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖). When an edge 𝑖𝑢 with attribute

𝑙 is deleted in G1, check the nodes that are not candidates of 𝑖

or 𝑢. Still take 𝑖 as an example. For 𝑗 ∉ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖), check if

(𝑵1 (𝑢,𝑢), 𝑙) == 𝑭 ( 𝑗, 𝑖). If so, check if 𝑗 can be a candidate of 𝑖 by

recover(j, i).
Change in G2. When an edge 𝑗𝑣 with attribute 𝑙 is inserted in

G2, check whether 𝑗 or 𝑣 can be candidates of nodes in G1. Take
𝑗 as an example. For 𝑖 in G1 such that 𝑗 ∉ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖), check if

(𝑵2 (𝑣, 𝑣), 𝑙) == 𝑭 ( 𝑗, 𝑖). If so, check if 𝑗 can be a candidate of 𝑖 by

𝑟𝑒𝑐𝑜𝑣𝑒𝑟 ( 𝑗, 𝑖). When an edge 𝑗𝑣 with attribute is deleted in G2, check
whether 𝑗 or 𝑣 should be filtered out of candidates of node in G1.
Still take 𝑗 as an example. For 𝑖 in G1 such that 𝑗 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖),
check if " 𝑗 does not have another neighbor pair (𝑵2 (𝑣, 𝑣), 𝑙) & 𝑖

has neighbor pair (𝑵2 (𝑣, 𝑣), 𝑙 )". If so, filter 𝑗 out of 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑖).
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