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ABSTRACT
With the widespread development of algorithmic fairness, there

has been a surge of research interest that aims to generalize the

fairness notions from the attributed data to the relational data

(graphs). The vast majority of existing work considers the fairness

measure in terms of the low-order connectivity patterns (e.g., edges),

while overlooking the higher-order patterns (e.g., 𝑘-cliques) and

the dynamic nature of real-world graphs. For example, preserving

triangles from graph cuts during clustering is the key to detecting

compact communities; however, if the clustering algorithm only

pays attention to triangle-based compactness, then the returned

communities lose the fairness guarantee for each group in the graph.

Furthermore, in practice, when the graph (e.g., social networks)

topology constantly changes over time, one natural question is how

can we ensure the compactness and demographic parity at each

timestamp efficiently. To address these problems, we start from the

static setting and propose a spectral method that preserves clique

connections and incorporates demographic fairness constraints in

returned clusters at the same time. To make this static method fit

for the dynamic setting, we propose two core techniques, Laplacian
Update via Edge Filtering and Searching and Eigen-Pairs Update with
Singularity Avoided. Finally, all proposed components are combined

into an end-to-end clustering framework named F-SEGA, and we

conduct extensive experiments to demonstrate the effectiveness,

efficiency, and robustness of F-SEGA.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; • Informa-
tion systems→ Clustering.
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1 INTRODUCTION

Figure 1: Evolving Structure breaks the Fairness during the
Continuous Clustering. At 𝑡 = 0, the unfair cut (purple) aligns
with the fair cut (red); then, at 𝑡 = 1, unfair communities are
discovered for only considering the cluster compactness but
ignoring the demographic fairness.

Nowadays, for the applications that require fair clustering, re-

search interests are devoted to designing various fair objectives [6,

11, 25–27, 29, 32], to ensure the fairness for the social good. For

example, based on relational data, the fairness constraints are estab-

lished to guide the spectral clustering such that the demographics

of each detected community are proportional to the whole distribu-

tion [29]. But the majority of existing graph clustering algorithms

consider the fairness constraints in terms of the low-order con-

nectivity patterns (e.g., edges) while overlooking the higher-order

patterns (e.g., 𝑘-cliques). Actually, clique density is a key factor

in many graph clustering applications. For example, 𝑘-clique pre-

served clusters (especially 𝑘 = 3) play a fundamental role in under-

standing the social network structures [15, 23, 30, 39], as well as in

identifying protein complexes and discovering new modules [1, 48].

https://doi.org/10.1145/3543507.3583423
https://doi.org/10.1145/3543507.3583423
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Therefore, designing fairness constraints (e.g., proportional demo-

graphics) for high-order (e.g., clique-preserving) clustering has a

huge application potential but largely remains nascent. For exam-

ple, in the citation network or co-author network, the high-order

clusters can be used for the expert team formation [31], but the

dense connections usually occur at the intra-subject level. With-

out proportional demographics, the formed team could not handle

interdisciplinary tasks requiring diverse backgrounds. Another ex-

ample is triangle-preserved communities, which are suited for the

community-driven recommendations [43]. However, when these

communities are tasked with voting, without proportional demo-

graphics, the voice of different groups, especially minority groups,

can barely be heard.

When we focus on clique-preserving dense clusters, it is not

clear how to guarantee fairness at the same time. Furthermore,

when the graph structure evolves [2, 18, 20, 28] , it can be even

more challenging to ensure the clustering compactness and demo-

graphic parity simultaneously (e.g., evolving structures can break

previously obtained fairness). Figure 1 illustrates the difficulty of

achieving demographic-fair and triangle-preserving clustering on

evolving graphs: even if the initial high-order clustering is demo-

graphically fair, as structure evolves, the fairness can be broken

if the cluster compactness is the only objective along with time.

Moreover, the straightforward application of (high-order) spectral

clustering methods [5, 41, 51] can be computationally prohibitive,

and the additional fairness and frequently updated graph structures

may further render the existing computational resources inade-

quate. The core problem is how to maintain fair and dense clusters

effectively and efficiently when the underlying structure is evolving.

Therefore, we need to model the two separate objectives (i.e.,

demographic fairness and clustering compactness) in a unified spec-

tral clustering framework. Then, efficient and effective techniques

are indispensable for adapting this framework to the dynamic set-

ting. In this paper, we start from the static setting and propose a

fairness-aware clique-preserving spectral clustering method, which

preserves clique connections from graph cuts and guides the cluster-

ing results to be fair, i.e., the demographics of each cluster are close

to the entire graph. Then, to adapt to the dynamic setting, we pro-

pose two core components: (1) Laplacian Update via Edge Filtering
and Searching, and (2) Eigen-Pairs Update with Singularity Avoided.
Thus, demographic-fair and clique-dense clusters under new arrival

graph structures can be incrementally tracked instead of solving

them from scratch. Finally, we combine the proposed techniques

into an end-to-end clustering framework named F-SEGA.

Our main contributions are summarized as follows.

• Problem: We unify the problem of fairness-aware and clique-

preserving spectral clustering, and extend it to dynamic graphs.

• Method: We propose a solution, F-SEGA, for demographic-fair

and clique-dense dynamic clustering with theoretical analysis.

• Evaluation: We design extensive experiments to demonstrate

the effectiveness, efficiency, and robustness of F-SEGA.

• Application: We identify the connection of F-SEGA to real-

world applications by designing a case study of dynamically and

proportionally allocating human resources.

The problem of fairness-aware and clique-preserving clustering

of temporal graphs is defined in Section 2. In Section 3, we intro-

duce the static clustering method and corresponding techniques to

Table 1: Table of Notation
Symbol Definition or Description

G temporal graph G = {𝐺 (1) ,𝐺 (2) , . . . ,𝐺 (𝑇 ) }
𝑉 set of each ever-appeared node in graph G
ℎ number of groups in graph G
𝑉𝑠 set of nodes belonging to the 𝑠-th group of G, 𝑠 ∈ {1, . . . , ℎ}
𝑭 member-group matrix of graph G
𝐺 (𝑡 )

snapshot graph at time 𝑡

𝐶
(𝑡 )
𝑙

the 𝑙-th cluster of 𝐺 (𝑡 )

Δ𝐸 (𝑡 ) updated edge set at time 𝑡 changing 𝐺 (𝑡 )
into 𝐺 (𝑡+1)

𝑨(𝑡 )
standard (edge-based) adjacency matrix of 𝐺 (𝑡 )

𝑾 (𝑡 )
clique-weighted adjacency matrix of 𝐺 (𝑡 )

𝑫 (𝑡 )
clique-weighted degree matrix of 𝐺 (𝑡 )

𝑳 (𝑡 )
clique-weighted Laplacian matrix of 𝐺 (𝑡 )

𝑴 (𝑡 )
fairness-constrained clique-weighted Laplacian of 𝐺 (𝑡 )

adapt it to the dynamic setting. Then we present our F-SEGA clus-

tering framework in Section 4. Experimental results are provided

in Section 5. Finally, we review the related work in Section 6 before

we conclude the paper in Section 7.

2 PRELIMINARY AND PROBLEM DEFINITION
Throughout this paper, we use lower-case letters for scalars (e.g.,

𝛼), upper-case letters for sets (e.g., 𝑉 ), bold lower-case letters for

column vectors (e.g., 𝒙), and bold upper-case letters for matrices

(e.g., 𝑨). We follow the matrix indexing, i.e., 𝐴(𝑖, :) denotes the 𝑖-
th row of 𝑨, and use the parenthesized superscript to denote the

timestamp (e.g., 𝐺 (𝑡 )
). We use

⊤
to denote the matrix transpose.

Cliques. A 𝑘-clique is a complete subgraph consisting of 𝑘 nodes,

and each pair of nodes are connected with an edge. For instance,

an edge is a 2-clique, and a triangle is a 3-clique.

Clique-Preserving Normalized Cut. Normalized cut (𝑁𝑐𝑢𝑡 )

[41] measures the compactness of the resulting clusters regarding

edge connections. A small 𝑁𝑐𝑢𝑡 indicates a good partition where

many edges are preserved in clusters. Here, we define the Clique-

Preserving 𝑁𝑐𝑢𝑡 (𝐶𝑃𝑁𝑐𝑢𝑡 ) to cover any 𝑘-cliques.

𝐶𝑃𝑁𝑐𝑢𝑡 (𝐶1, . . . ,𝐶𝑞,N) =
𝑞∑︁
𝑖=1

𝑐𝑢𝑡 (𝐶𝑖 ,𝑉 \𝐶𝑖 ,N)
𝜇 (𝐶𝑖 ,N)

(1)

whereN denotes the target 𝑘-clique to be preserved from partitions,

𝑐𝑢𝑡 (𝐶,𝑉 \𝐶𝑖 ,N) is the number of broken cliques for partitioning

graph 𝐺 into cluster 𝐶𝑖 and its complement 𝑉 \ 𝐶𝑖 , and 𝜇 (𝐶𝑖 ,N)
denotes the number of instances of cliques within 𝐶𝑖 . When 𝑘 = 2,

the defined 𝐶𝑃𝑁𝑐𝑢𝑡 is 𝑁𝑐𝑢𝑡 ; when 𝑘 ≥ 3, 𝐶𝑃𝑁𝑐𝑢𝑡 measures the

compactness of high-order clique connections.

Demographic Fairness Constraints. A clustering is fair if the

demographics of each cluster are close to the demographics of the

whole graph [14, 29], which is expressed as follows.

∀𝑠 ∈ {1, . . . , ℎ}, |𝑉𝑠
⋂
𝐶𝑖 |

|𝐶𝑖 |
=

|𝑉𝑠 |
|𝑉 | (2)

where 𝑉𝑠 stands for the set of nodes of the 𝑠-th group when the

entire set of nodes 𝑉 =
⋃ℎ

𝑠=1𝑉𝑠 has ℎ different groups in total, and

𝐶𝑖 is the 𝑖-th cluster produced by a clustering method.

Graph Arrival Model. We consider a temporal graph as a se-

quence of snapshots, G = {𝐺 (1) ,𝐺 (2) , . . . ,𝐺 (𝑇 ) }, where 𝐺 (𝑡 ) =

(𝑉 (𝑡 ) , 𝐸 (𝑡 ) ) is undirected and unweighted, 𝑉 (𝑡 )
and 𝐸 (𝑡 ) represent

the set of nodes and edges at timestamp 𝑡 respectively. Follow-

ing [9, 42], an inserted (or deleted) node at timestamp 𝑡 is regarded
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as an existing dangling node at all previous timestamps (or all

future timestamps). Thus, we denote |𝑉 (𝑡 ) | = |𝑉 | = 𝑛, i.e., 𝑉 (𝑡 )

consists of each appeared node in the whole life of G, such that

the dimension of affinity matrices over time is consistent. Also, we

assume the demographic group information of a node remains over

time [29], 𝑉
(𝑡 )
𝑠 = 𝑉

(𝑡+1)
𝑠 , e.g., a male user in the social network

always belongs to the male group as the graph structure evolves.

Between two consecutive snapshots, we define the set of updated

edges as Δ𝐸 (𝑡 ) = Δ𝐸
(𝑡 )
+ ∪Δ𝐸

(𝑡 )
− = {𝐸 (𝑡+1) \ 𝐸 (𝑡 ) } ∪ {𝐸 (𝑡 ) \ 𝐸 (𝑡+1) },

where Δ𝐸
(𝑡 )
+ and Δ𝐸

(𝑡 )
− denote the inserted and deleted edges at

timestamp 𝑡 to change 𝐺 (𝑡 )
into 𝐺 (𝑡+1)

.

Our goal is to partition the temporal graph G while largely

preserving user-specified 𝑘-cliques from fair cuts through all given

timestamps. To be specific, at timestamp 𝑡 , we aim to partition graph

𝐺 (𝑡 )
into 𝑞 disjoint clusters

⋃𝑞

𝑖=1
𝐶
(𝑡 )
𝑖

= 𝑉 and𝐶
(𝑡 )
𝑖

∩𝐶 (𝑡 )
𝑗

= ∅ with
𝑖 ≠ 𝑗 ∈ {1, 2, . . . , 𝑞} via the following objective.

min

𝐶
(𝑡 )
𝑖

𝑇∑︁
𝑡=1

𝐶𝑃𝑁𝑐𝑢𝑡 (𝐶 (𝑡 )
1
, . . . ,𝐶

(𝑡 )
𝑞 ,N) (3)

s.t.

∀𝑠 ∈ {1, . . . , ℎ} :
|𝑉𝑠

⋂
𝐶
(𝑡 )
𝑖

|

|𝐶 (𝑡 )
𝑖

|
=

|𝑉𝑠 |
|𝑉 | , 𝑡 ∈ {1, . . . ,𝑇 } (4)

Our problem can be formally defined as follows.

Problem. Fairness-Aware Clique-Preserving Clustering of Tempo-
ral Graphs

Input: (i) a temporal graph G = {𝐺 (1) , . . . ,𝐺 (𝑇 ) }, (ii) the number
of clusters 𝑞, and (iii) a 𝑘-clique N.

Output: clusters {𝐶 (𝑡 )
1
, . . . 𝐶

(𝑡 )
𝑞 } for 𝑡 ∈ {1, . . . ,𝑇 } satisfying clique-

dense and demographic-fair objectives (Eq. 3 and Eq. 4).

3 PROPOSED TECHNIQUES
We start with the static setting and explain how to obtain the

fairness-aware clique-preserving clustering (Section 3.1). Then we

adapt this static method to the dynamic setting via two components:

Laplacian Update via Edge Filtering and Searching (Section 3.2),

and Eigen-Pairs Update with Singularity Avoided (Section 3.3).

3.1 Fairness-Aware Clique-Preserving Spectral
Clustering: From Static to Dynamic

Clique-Preserving Spectral Clustering. Traditional spectral clus-
tering (e.g., [41]) is a special case of minimizing𝐶𝑃𝑁𝑐𝑢𝑡 if the target

clique N is set to be an edge (𝑘 = 2). To accommodate high-order

(𝑘 ≥ 3) clique patterns,𝐶𝑃𝑁𝑐𝑢𝑡 (i.e., Eq. 1) is instantiated as follows.

𝐶𝑃𝑁𝑐𝑢𝑡 (𝐶1, . . . ,𝐶𝑞,N) =
𝑞∑︁
𝑙=1

𝑐𝑢𝑡 (𝐶𝑙 ,𝑉 \𝐶𝑙 ,N)
𝜇 (𝐶𝑙 ,N)

w.r.t

𝑐𝑢𝑡 (𝐶𝑙 ,𝑉 \𝐶𝑙 ,N) =
∑︁

𝑖∈𝐶𝑙 , 𝑗 ∈𝑉 \𝐶𝑙

𝑊 (𝑖, 𝑗) ,

𝜇 (𝐶𝑙 ,N) =
∑︁

𝑖∈𝐶𝑙 , 𝑗 ∈𝑉
𝑊 (𝑖, 𝑗)

(5)

where𝑾 ∈ R𝑛×𝑛 is the clique-weighted adjacency matrix, 𝑛 is the

number of nodes, and𝑊 (𝑖, 𝑗) is the number of instances of clique

N containing edge (𝑖, 𝑗). For example, if 𝑘 = 3 and edge (𝑖, 𝑗) makes

up 4 different triangles, then𝑊 (𝑖, 𝑗) = 4.

For a clustering result

⋃𝑞

𝑙=1
𝐶𝑙 , if we represent it by a node-cluster

assignment matrix 𝑯 ∈ R𝑛×𝑞 as follows,

𝐻 (𝑖, 𝑙) =
{
1/
√︁
𝜇 (𝐶𝑙 ,N) 𝑖 ∈ 𝐶𝑙

0 otherwise

(6)

then we will get 𝐶𝑃𝑁𝑐𝑢𝑡 (𝐶1, . . . ,𝐶𝑞,N) = 𝑇𝑟 (𝑯⊤𝑳𝑯 ), where 𝑯⊤

is the transpose of matrix 𝑯 , 𝑇𝑟 (·) denotes the trace of a matrix,

𝑳 = 𝑫−𝑾 ∈ R𝑛×𝑛 is the Laplacian matrix,𝑫 is the clique-weighted

degree matrix, i.e., 𝑫 = 𝑑𝑖𝑎𝑔(𝑾𝒆), and 𝒆 is the vector with all ones
1
.

Therefore, minimizing𝐶𝑃𝑁𝑐𝑢𝑡 equals to the trace minimization

problem, i.e., min𝐶𝑃𝑁𝑐𝑢𝑡 (𝐶1, . . . ,𝐶𝑞,N) = min𝑇𝑟 (𝑯⊤𝑳𝑯 ), with
𝑯 defined in Eq. 6. Since this minimization problem is discrete

and proven NP-complete [41], we relax this problem by allowing

the entries of matrix 𝑯 to take any real values. Then the trace

minimization objective is rewritten as follows.

min

𝑯 ∈R𝑛×𝑞
𝑇𝑟 (𝑯⊤𝑳𝑯 ) s.t. 𝑯⊤𝑫𝑯 = 𝑰 (7)

Substituting 𝑯 = 𝑫−1/2𝑻 with 𝑻 ∈ R𝑛×𝑞 , we have
min

𝑻 ∈R𝑛×𝑞
𝑇𝑟 (𝑻⊤𝑫−1/2𝑳𝑫−1/2𝑻 ) s.t. 𝑻⊤𝑻 = 𝑰 (8)

Then the trace minimization problem (i.e., Eq. 8) for finding the

optimal 𝑻 can be solved by Rayleigh-Ritz theorem (Section 5.2.2(6)

in [33]), which computes the𝑞 smallest eigenvalues of𝑫−1/2𝑳𝑫−1/2

and stores the corresponding eigenvectors as columns of the optimal

𝑻 . To infer the clustering result from 𝑯 = 𝑫−1/2𝑻 , we can apply

the 𝐾-means algorithm [47] on the rows of 𝑯 .

Fairness Constraints on Clique-Preserving Clusters. To make

the clique-preserving spectral clustering demographic fair, we need

to add the fairness constraint (i.e., Eq. 4) to the clique-preserving

clustering. We first derive Eq. 4 as follows.

∀𝑠 ∈ {1, . . . , ℎ} : |𝑉𝑠
⋂
𝐶𝑙 |

|𝐶𝑙 |
=

|𝑉𝑠 |
|𝑉 | (9)

⇔ ∀𝑠 ∈ {1, . . . , ℎ − 1} :
𝑛∑︁
𝑖=1

(
𝑓𝑠 (𝑖) −

|𝑉𝑠 |
𝑛

)
𝐻 (𝑖, 𝑙) = 0

where 𝒇𝑠 ∈ R𝑛 is the group-membership vector: if node 𝑖 belongs

to the group 𝑠 , then 𝑓𝑠 (𝑖) = 1; otherwise, 𝑓𝑠 (𝑖) = 0. Eq. 9 can be

proven by replacing 𝐻 (𝑖, 𝑙) with Eq. 6. With the fairness constraint,

i.e., Eq. 9, the objective of clique-preserving spectral clustering (i.e.,

Eq. 7) can be extended as follows.

min

𝑯 ∈R𝑛×𝑞
𝑇𝑟 (𝑯⊤𝑳𝑯 ) s.t. 𝑯⊤𝑫𝑯 = 𝑰 and 𝑭⊤𝑯 = 0 (10)

where 𝑭 ∈ R𝑛×(ℎ−1) is the group-membership matrix with column

vectors 𝒇𝑠 − |𝑉𝑠 |
𝑛 · 𝒆, and 0 stands for the zero matrix.

To solve Eq. 10 by Rayleigh-Ritz theorem [33], we substitute

𝑯 = 𝒁𝑸−1𝑿 for 𝒁 ∈ R𝑛×(𝑛−ℎ+1) with 𝑸 ∈ R(𝑛−ℎ+1)×(𝑛−ℎ+1)

min

𝑿 ∈R(𝑛−ℎ+1)×𝑞
𝑇𝑟 (𝑿⊤𝑸−1𝒁⊤𝑳𝒁𝑸−1𝑿 ) s.t. 𝑿⊤𝑿 = 𝑰 (11)

where 𝒁 is the matrix whose columns are the orthonormal basis of

the nullspace of 𝑭⊤, and 𝑸2 = 𝒁⊤𝑫𝒁 . Thus, 𝒁 and 𝑸 are directly

solvable from 𝑭 and𝑫 . Similarly, we first need to compute𝑞 smallest

eigenvalues
2
of matrix 𝑸−1𝒁⊤𝑳𝒁𝑸−1

, and store the corresponding

1𝑑𝑖𝑎𝑔 ( ·) is defined as the standard diagonalize operation.

2
We assume 𝑞 ≤ 𝑛 − ℎ + 1 for valid solutions.
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eigenvectors as columns of the optimal 𝑿 ; then we infer a clique-

preserving and demographic-fair clustering from 𝑯 = 𝒁𝑸−1𝑿 by

𝐾-means. For notation clarity, we denote the matrix 𝑴 as follows

and name it fairness-constrained clique-weighted Laplacian matrix.
𝑴 = 𝑸−1𝒁⊤𝑳𝒁𝑸−1 ∈ R(𝑛−ℎ+1)×(𝑛−ℎ+1) (12)

Challenges from the Dynamic Setting. To extend the unified

objective (i.e., Eq. 10) to the dynamic setting, two challenges need

to be addressed when the input graph is evolving over time.

• Updated edges change the graph structure. Instead of rebuilding

𝑴 (𝑡+1)
from scratch every single timestamp, we need to identify

the unchanged structures and update the outdated structures

inside 𝑴 (𝑡 )
for efficiency (Section 3.2).

• Instead of solving eigenvalues and eigenvectors (i.e., eigen-pairs)

of 𝑴 (𝑡+1)
from scratch every single timestamp, we need to com-

pute them in a fast manner. Moreover, we also need to eliminate

accumulated tracking errors, if any (Section 3.3).

3.2 Laplacian Update via Edge Filtering and
Searching

When the new graph arrives, updated edge set Δ𝐸 (𝑡 ) changes

the fairness-constrained Laplacian matrix 𝑴 (𝑡 )
into 𝑴 (𝑡+1)

. In

Section 3.1, 𝑴 = 𝑸−1𝒁⊤𝑳𝒁𝑸−1
, where 𝒁 and 𝑸 depend on the

member-group matrix 𝑭 . Since we assume the demographic group

membership of each node remains the same, the Laplacian matrix

𝑳 (𝑡 ) = 𝑫 (𝑡 ) −𝑾 (𝑡 )
is the changing part of𝑴 (𝑡 )

. To update 𝑳 (𝑡 )
, we

focus on updating𝑾 (𝑡+1)
, i.e., clique-weighted adjacency matrix.

Updating the corresponding matrices between two consecutive

timestamps determines the time complexity of many temporal

graph algorithms [17, 19, 21, 24, 44]. According to [21], in the

worst case, updating our 𝑾 (𝑡 )
for one single updated edge will

cost 𝑂 (𝑛𝑘−2), where 𝑛 is the number of nodes in the graph G, and

𝑘 is the number of nodes in the target clique N. However, not every
updated edge will change the previous spectral clustering result,

and we call such an edge insensitive updated edge, otherwise, we
regard it as a sensitive updated edge. Hence, we aim to filter insensi-
tive updated edges other than involving them in the update of𝑾 (𝑡 )

.

First, we model insensitive updated edges as follows.

Definition 3.1 (Insensitive Updated Edge). At timestamp 𝑡 , given

the clustering result

⋃𝑞

𝑙=1
𝐶
(𝑡 )
𝑙

, an updated edge 𝑒 = (𝑖, 𝑗) ∈ Δ𝐸 (𝑡 )

is insensitive if it satisfies the following conditions:

𝑖, 𝑗 ∈ 𝐶 (𝑡 )
𝑙
, 𝑒 = (𝑖, 𝑗) ∈ Δ𝐸

(𝑡 )
+ ,

𝐷𝑖𝑠𝑡 (𝑖,𝑉 \𝐶 (𝑡 )
𝑙

) > 1, 𝐷𝑖𝑠𝑡 ( 𝑗,𝑉 \𝐶 (𝑡 )
𝑙

) > 1

(13)

or

𝑖 ∈ 𝐶 (𝑡 )
𝑙
, 𝑗 ∈ 𝑉 \𝐶 (𝑡 )

𝑙
, 𝑒 = (𝑖, 𝑗) ∈ Δ𝐸 (𝑡 )− ,

𝐷𝑖𝑠𝑡 (𝑖,𝑉 \𝐶 (𝑡 )
𝑙

) ≤ 1

(14)

where 𝐷𝑖𝑠𝑡 (𝑣,𝐶 (𝑡 ) ) denotes the shortest distance (i.e., the number

of hops) from node 𝑣 to reach any node within the cluster𝐶 (𝑡 )
. The

condition 𝐷𝑖𝑠𝑡 (𝑖,𝑉 \𝐶 (𝑡 )
𝑙

) > 1 indicates that node 𝑖 does not induce

any 𝑘-clique on the clustering boundary.

Note that the insensitive edge is independent of its nodes group

membership, and it is only related to graph structures. Intuitively,

Eq. 13 can be understood as an "inserted intra-cluster edge", and

Algorithm 1 Laplacian Update via Edge Filtering and Searching

Input:
updated edge set Δ𝐸 (𝑡 ) , matrices 𝑨(𝑡 )

,𝑾 (𝑡 )
, and 𝑫 (𝑡 )

Output:
matrices 𝑨(𝑡+1)

,𝑾 (𝑡+1)
, 𝑫 (𝑡+1)

, and 𝑳 (𝑡+1)

1: if each 𝑒 ∈ Δ𝐸 (𝑡 ) satisfies Eq. 13 or Eq. 14 then
2: Save Δ𝐸 (𝑡 ) for next timestamp updates

3: else
4: for 𝑒 = (𝑖, 𝑗) ∈ Δ𝐸 (𝑡 ) do /*Denote 𝑖 with the larger degree*/

5: Update adjacency matrix 𝑨(𝑡 )
for edge (𝑖, 𝑗)

6: Mark all the nodes adjacent to 𝑖 based on 𝑨(𝑡 )

7: for each node 𝑟 adjacent to 𝑗 do
8: if node 𝑟 is marked then
9: Input each node pair of 𝑖 , 𝑗 , 𝑟 into Eq. 15

10: end if
11: end for
12: Erase marks

13: end for
14: end if

Eq. 14 can be understood as a "deleted inter-cluster edge"; whereas a
sensitive edge is an "inserted inter-cluster edge" or a "deleted intra-
cluster edge". It is easy to prove that a single insensitive updated edge
will not change the previous spectral clustering (i.e., the optimal

partition

⋃𝑞

𝑙=1
𝐶
(𝑡 )
𝑙

still achieves the optimal𝐶𝑃𝑁𝑐𝑢𝑡 ratio at 𝑡 + 1).

Therefore, comparing with updating𝑾 (𝑡 )
for one insensitive edge

𝑒 = (𝑖, 𝑗) costing 𝑂 (𝑛𝑘−2), our proposed edge filtering operation

(i.e., Eq. 13 and Eq. 14) only costs 𝑂 (𝑚𝑎𝑥 (𝐷 (𝑡 ) (𝑖, 𝑖), 𝐷 (𝑡 ) ( 𝑗, 𝑗))) for
identifying that insensitive edge, filtering it out for the current time

update, and saving it for the future timestamps. However, even if

Δ𝐸 (𝑡 ) only contains insensitive updated edges, multiple insensitive

edges may change the spectral clustering structure under extreme

circumstances. In the proof of Proposition 1, we analyze the extreme

scenario when many insensitive updated edges affect the previously

identified optimal clustering.

Proposition 1. Assuming that the clustering
⋃𝑞

𝑙=1
𝐶
(𝑡 )
𝑙

is ob-
tained by minimizing 𝐶𝑃𝑁𝑐𝑢𝑡 ratio under the fairness constraint
at time 𝑡 and Δ𝐸 (𝑡 ) only contains insensitive updated edges, the ex-
treme cases exists (e.g., when the insensitive added edges are heavily
localized) that the structure

⋃𝑞

𝑙=1
𝐶
(𝑡 )
𝑙

is not guaranteed to have the
minimal 𝐶𝑃𝑁𝑐𝑢𝑡 ratio at time 𝑡 + 1. (Proof in Appendix.)

Proposition 1 suggests that even if Δ𝐸 (𝑡 ) only consists of insensi-
tive updated edges, the previous optimal clustering may not remain

optimal when those updates are centralized on a local area of graph

𝐺 (𝑡 )
. However, in practice, the graph itself and the corresponding

updates can be usually sparse [2], and we can assume the extreme

cases (e.g., updates are densely localized) in Proposition 1 are rare

and obvious against the sparse background. Hence, if extreme cases

happen, we may relatively easily observe them (e.g., by identifying

the distance among updates or comparing the conductance of local

updates with the previously-obtained conductance of the entire

graph) and re-run the static algorithm from scratch. Thus, in the

dynamic setting, we can filter Δ𝐸 (𝑡 ) when it only contains insensi-

tive updated edges and save the filtered edges for future updates.

But when Δ𝐸 (𝑡 ) contains a single sensitive updated edge, even if

the majority of Δ𝐸 (𝑡 ) is insensitive, the whole Δ𝐸 (𝑡 ) need to be
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involved into the updating process. Because any sensitive edge

will change the previous clustering structure, which will make the

currently considered insensitive edges invalid.

After edge filtering, we can then update𝑾 (𝑡 )
efficiently based

on edge searching. First, we start from each inserted (or deleted)

edge and then incrementally search edges that compose instances

(or disappearance) of 𝑘-cliques. After that, we add the newly found

cliques to𝑾 (𝑡 )
. To be specific, the searching process is instanced by

the enumeration of 𝑘-cliques containing the node 𝑖 of the updated

edge 𝑒 = (𝑖, 𝑗) into the enumeration of (𝑘−1)-cliques in the subgraph
induced by the neighbors of node 𝑖 , until (𝑘 − 1) = 2. We illustrate

the process for 𝑘 = 3 in Alg. 1 and analyze how a 𝑘-clique is

decomposed for the fast enumeration in Proposition 2. In Steps

6-8, enumerating an appeared (or disappeared) triangle due to the

updated edge (𝑖, 𝑗) is decomposed into the enumeration of any edge

containing node 𝑗 in the subgraph induced by the 1-hop neighbors

of node 𝑖 . After detecting an appearing (or disappearing) triangle,

Step 9 feeds each involved node into Eq. 15 to update𝑾 (𝑡 )
.

𝑊 (𝑡 ) (𝑢, 𝑣) =𝑊 (𝑡 ) (𝑢, 𝑣) + 𝛾 (15)

where 𝑢 and 𝑣 denote any two nodes which cause the appearance

(or disappearance) of the 𝑘-clique N; 𝛾 = 1 (or −1) if the updated
edge is an inserted (or deleted) edge. With the recursion rule of

decomposing a 𝑘-clique into a (𝑘 − 1)-clique [13], the searching
time complexity is bounded by the arboricity of the current graph

as shown in Proposition 2.

Proposition 2. Given the graph 𝐺 (𝑡 ) and set Δ𝐸 (𝑡 ) contain-
ing sensitive updated edges, updating matrix𝑾 (𝑡 ) in terms of user-
specified 𝑘-clique (𝑘 ≥ 2) costs time complexity𝑂 (𝑘𝛼𝑘−2𝑚 (𝑡 ) ), where
𝛼 is the arboricity of graph 𝐺 (𝑡 ) , and𝑚 (𝑡 ) is the number of edges in
graph 𝐺 (𝑡 ) . (Proof in Appendix.)

3.3 Eigen-Pairs Update with Singularity
Avoided

Next, to infer clustering, we need 𝑞 smallest eigenvalues 𝜆1, . . . , 𝜆𝑞
and the corresponding eigenvectors 𝒖1, . . . , 𝒖𝑞 (i.e., eigen-pairs) of

the updated 𝑴 (𝑡+1)
. We denote 𝚲 ∈ R𝑞 as the column vector con-

sisting of𝑞 smallest eigenvalues, i.e.,Λ(𝑖) = 𝜆𝑖 , and 𝑼 ∈ R(𝑛−ℎ+1)×𝑞
as the matrix consisting of th corresponding 𝑞 eigenvectors, i.e.,

𝑈 (:, 𝑗) = 𝒖 𝑗 . However, computing eigen-pairs (𝚲(𝑡+1) , 𝑼 (𝑡+1) ) is
costly, typically requiring 𝑂 (𝑛3) time [41], where 𝑛 is the number

of nodes at time 𝑡 + 1. Therefore, we aim to track them instead

of solving them every single time. To be specific, based on matrix

perturbation theory in [9], when 𝑴 (𝑡 )
changes into 𝑴 (𝑡+1)

, the

change of eigen-pairs is expressed as follows.

(𝑴 (𝑡 ) + Δ𝑴) (𝒖 (𝑡 )
𝑖

+ Δ𝒖𝑖 ) = (𝜆 (𝑡 )
𝑖

+ Δ𝜆𝑖 ) (𝒖 (𝑡 )𝑖
+ Δ𝒖𝑖 ) (16)

where 𝜆
(𝑡 )
𝑖

and 𝒖 (𝑡 )
𝑖

are the 𝑖-th eigenvalue and eigenvector of𝑴 (𝑡 )
,

𝑖 ∈ {1, . . . , 𝑞}. Then we can expand Eq. 16 and obtain Eq. 17.

𝑴 (𝑡 )Δ𝒖𝑖 +Δ𝑴𝒖 (𝑡 )
𝑖

+Δ𝑴Δ𝒖𝑖 = 𝜆
(𝑡 )
𝑖

Δ𝒖𝑖 +Δ𝜆𝑖𝒖 (𝑡 )𝑖
+Δ𝜆𝑖Δ𝒖 (𝑡 )𝑖

(17)

Eigenvalue Update. Based on Eq. 17, we multiply 𝒖 (𝑡 )⊤
𝑖

on both

sides. Suppose matrix 𝑴 (𝑡 )
is near symmetric, and the eigenvector

has unit length, then we get the following equation.

𝒖 (𝑡 )⊤
𝑖

Δ𝑴𝒖 (𝑡 )
𝑖

+ 𝒖 (𝑡 )⊤
𝑖

Δ𝑴Δ𝒖𝑖 = Δ𝜆𝑖 + 𝒖 (𝑡 )⊤
𝑖

Δ𝜆𝑖Δ𝒖
(𝑡 )
𝑖

(18)

Algorithm 2 Eigen-Pairs Update with Singularity Avoided

Input:
eigen-pairs (𝚲(𝑡 ) , 𝑼 (𝑡 ) ), perturbation matrix Δ𝑴

Output:
eigen-pairs (𝚲(𝑡+1) , 𝑼 (𝑡+1) )

1: Compute 𝑿 (𝑡 ) = 𝑼 (𝑡 )⊤Δ𝑴𝑼 (𝑡 )

/*Eigenvalue Update*/

2: ΔΛ = 𝑑𝑖𝑎𝑔(𝑿 (𝑡 ) )
3: Λ(𝑡+1) = Λ(𝑡 ) + ΔΛ

/*Eigenvector Update*/

4: Singularity = False

5: for 𝑖 = 1 : 𝑞 do
6: Form 𝐵 (𝑡 ) ( 𝑗, 𝑗) = 𝜆 (𝑡 )

𝑖
+ Δ𝜆𝑖 − 𝜆 (𝑡 )𝑗

for 𝑗 = 1, . . . , 𝑞

7: Compute 𝒃𝑖 = (𝑩 (𝑡 ) − 𝑿 (𝑡 ) )−1𝑋 (:, 𝑖) (𝑡 )
8: if (𝑩 (𝑡 ) − 𝑿 (𝑡 ) ) is singular then
9: Singularity = True; Break

10: end if
11: 𝒖 (𝑡+1)

𝑖
= 𝒖 (𝑡 )

𝑖
+∑𝑞

𝑗=1
𝒃𝑖 ( 𝑗)𝒖 (𝑡 )𝑗

12: end for
13: if Singularity == True then
14: for 𝑖 = 1 : 𝑞 do
15: 𝒖 (𝑡+1)

𝑖
= 𝒖 (𝑡 )

𝑖

16: 𝒖 (𝑡+1)
𝑖

+ =
𝒖 (𝑡 )⊤
𝑗

Δ𝑴𝒖 (𝑡 )
𝑖

𝜆
(𝑡 )
𝑖

−𝜆 (𝑡 )
𝑗

𝒖 (𝑡 )
𝑗

for 𝑗 = 1, . . . , 𝑞 and 𝑗 ≠ 𝑖

17: end for
18: end if

According to the assumption of [9] that Δ𝜆𝑖 ≪ 𝜆𝑖 and Δ𝒖𝑖 ≪ 𝒖𝑖 ,

then 𝒖 (𝑡 )⊤
𝑖

Δ𝑴Δ𝒖𝑖 and 𝒖 (𝑡 )⊤
𝑖

Δ𝜆𝑖Δ𝒖
(𝑡 )
𝑖

in Eq. 18 are safely omitted

during the computation of Δ𝜆𝑖 . Therefore, we get eigenvalue update
equation as follows.

𝜆
(𝑡+1)
𝑖

= 𝜆
(𝑡 )
𝑖

+ Δ𝜆𝑖 , s.t. Δ𝜆𝑖 = 𝒖 (𝑡 )⊤
𝑖

Δ𝑴𝒖 (𝑡 )
𝑖

(19)

Eigenvector Update. Since we assume the dimensions of 𝑴 (𝑡 )

and 𝑴 (𝑡+1)
are the same, the vector Δ𝒖𝑖 can be expressed by the

weighted sum of current eigenvectors as Δ𝒖𝑖 =
∑𝑞

𝑗=1
𝛽 𝑗𝑖 𝒖

(𝑡 )
𝑗

. Next,

we need to estimate each weight 𝛽 𝑗𝑖 to get Δ𝒖𝑖 , and finally obtain

𝒖 (𝑡+1)
𝑖

= 𝒖 (𝑡 )
𝑖

+ Δ𝒖𝑖 .
To solve for each 𝛽 𝑗𝑖 , again starting from Eq. 17, we replace

Δ𝒖𝑖 with
∑𝑞

𝑗=1
𝛽 𝑗𝑖 𝒖

(𝑡 )
𝑗

and multiply any eigenvector 𝒖 (𝑡 )𝑝 (1 ≤
𝑝 ≤ 𝑞, 𝑝 ≠ 𝑖) on both sides. Then, based on the orthogonality of

eigenvectors, we rearrange terms and get the following equation.

𝑋 (:, 𝑖) (𝑡 ) − 𝑩 (𝑡 )𝒃𝑖 + 𝑿 (𝑡 )𝒃𝑖 = 0 (20)

where 𝑿 (𝑡 ) = 𝑼 (𝑡 )⊤Δ𝑴𝑼 (𝑡 )
. 𝑩 (𝑡 ) ∈ R𝑞×𝑞 is the diagonal matrix

with 𝐵 (𝑡 ) ( 𝑗, 𝑗) = 𝜆 (𝑡 )
𝑖

+ Δ𝜆𝑖 − 𝜆 (𝑡 )𝑗
, and 𝜆𝑖 is from Eq. 19. 𝒃𝑖 ∈ R𝑞

is the weight vector to compute Δ𝑢𝑖 , i.e., 𝒃𝑖 ( 𝑗) = 𝛽 𝑗𝑖 . Rearranging
Eq. 20, we have the weight computation equation below.

𝒃𝑖 = (𝑩 (𝑡 ) − 𝑿 (𝑡 ) )−1𝑋 (:, 𝑖) (𝑡 ) (21)

With 𝒃𝑖 , we can then compute 𝒖 (𝑡+1)
𝑖

as follows.

𝒖 (𝑡+1)
𝑖

= 𝒖 (𝑡 )
𝑖

+ Δ𝒖𝑖 , s.t. Δ𝒖𝑖 =

𝑞∑︁
𝑗=1

𝒃𝑖 ( 𝑗)𝒖 (𝑡 )𝑗
(22)
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However, in Eq. 21, when a certain eigenvalue does not change,

then 𝑩 (𝑡 )
is a singular matrix. Since the graph and its update are

usually sparse, 𝑩 (𝑡 ) −𝑿 (𝑡 )
is also highly likely to be singular, then

an unchanged eigenvalue will stop other eigenvectors’ update.

To address this issue, we aim to update eigenvector 𝒖𝑖 indepen-
dent of its Δ𝜆𝑖 . Again, starting from Eq. 17 and omitting trivial

terms Δ𝑴Δ𝒖𝑖 and Δ𝜆𝑖Δ𝒖
(𝑡 )
𝑖

, we obtain the approximation solution

𝑴 (𝑡 )Δ𝒖𝑖 +Δ𝑴𝒖 (𝑡 )
𝑖

= 𝜆
(𝑡 )
𝑖

Δ𝒖𝑖 +Δ𝜆𝑖𝒖 (𝑡 )𝑖
, where we replace Δ𝒖𝑖 with∑𝑞

𝑗=1
𝛽 𝑗𝑖 𝒖

(𝑡 )
𝑗

and get the weight 𝛽 𝑗𝑖 as follows.

𝛽 𝑗𝑖 =
𝒖 (𝑡 )⊤
𝑗

Δ𝑴𝒖 (𝑡 )
𝑖

𝜆
(𝑡 )
𝑖

− 𝜆 (𝑡 )
𝑗

(23)

Then, the alternative eigenvector update operation is as follows.

𝒖 (𝑡+1)
𝑖

= 𝒖 (𝑡 )
𝑖

+ Δ𝒖𝑖 , s.t. Δ𝒖𝑖 =

𝑞∑︁
𝑗=1

𝒖 (𝑡 )⊤
𝑗

Δ𝑴𝒖 (𝑡 )
𝑖

𝜆
(𝑡 )
𝑖

− 𝜆 (𝑡 )
𝑗

𝒖 (𝑡 )
𝑗

(24)

Note that, comparing with Eq. 22, Eq. 24 is less accurate by omit-

ting two mentioned trivial terms, but the matrix singularity issue

is avoided. Now, we are ready to present Alg 2. to track eigenval-

ues and eigenvectors of 𝑴 (𝑡+1)
. In Alg. 2, Steps 2–3 update the

eigenvalue based on Eq. 19, Steps 5–12 update the eigenvector ac-

cording to Eq. 22 if singularity issue does not happen, otherwise

Steps 13–18 update the eigenvector according to Eq. 24. The total

time complexity of Alg. 2 is bounded, as shown in Proposition 3.

Proposition 3. Given the perturbation matrix Δ𝑴 from time 𝑡
to 𝑡 + 1, using Alg. 2 to track (𝚲(𝑡+1) , 𝑼 (𝑡+1) ) costs time complexity
𝑂 (𝑞4 + 𝑛𝑞2), where 𝑞 stands for the number of tracked eigenvalues,
and 𝑛 is the number of nodes. (Proof in Appendix.)

4 F-SEGA ALGORITHM
In this section, we combine all proposed techniques and introduce

the end-to-end clustering framework, F-SEGA, in Alg. 3. Given

the user-specified 𝑘-clique N, the desired number of clusters 𝑞, the

group-membership matrix 𝑭 , the clique-weighted adjacency matrix

𝑾 (0)
at 𝑡 = 0, and the updated edge set {Δ𝐸 (0) , . . . ,Δ𝐸 (𝑇−1) }, F-

SEGA algorithm outputs the clique-preserving and fairness-aware

clustering associated with each timestamp 𝑡 . In Alg. 3, the initial

clustering at 𝑡 = 0 can be obtained through the proposed static

algorithm (Section 3.1). Then, Step 2 updates Laplacian matrix 𝑳 (𝑡 )

into 𝑳 (𝑡+1)
to obtain𝑴 (𝑡+1)

through Eq. 12. After that, Step 3 tracks

eigen-pairs of the obtained 𝑴 (𝑡+1)
by leveraging the perturbation

between 𝑴 (𝑡+1)
and 𝑴 (𝑡 )

in Alg. 2. Finally, Step 4 returns the

clique-preserving and fair clustering result.

Theorem 4.1 (Time Complexity of F-SEGA). The time complex-
ity of the proposed F-SEGA algorithm is bounded by 𝑂 (𝑘𝛼𝑘−2𝑚 (𝑡 ) +
𝑞4 + 𝑞2𝑛) at each timestamp 𝑡 , where 𝑘 is the number of nodes in
user-defined clique N, 𝛼 is the arboricity of graph 𝐺 (𝑡 ) , and𝑚 (𝑡 ) is
the number of edges in graph 𝐺 (𝑡 ) . (Proof in Appendix.)

5 EXPERIMENTS
We evaluate the effectiveness, efficiency, and parameter sensitiv-

ity of F-SEGA
3
through comparison with baselines and ablation

3
https://github.com/DongqiFu/F-SEGA

Algorithm 3 Fairness-Aware Clique-Preserving Spectral Cluster-

ing of Temporal Graphs (F-SEGA)

Input:
𝑘-clique N, number of clusters 𝑞, matrices 𝑨(0)

,𝑾 (0)
, 𝑭 , and

updated edge set {Δ𝐸 (0) , . . . ,Δ𝐸 (𝑇−1) }.
Output:

clusters {𝐶 (𝑡 )
1
, . . . 𝐶

(𝑡 )
𝑞 }, where 𝑡 ∈ {1, 2, . . . ,𝑇 }

1: for 𝑡 = 0 : 𝑇 − 1 do
2: Update graph Laplacian matrix 𝑳 (𝑡 )

into 𝑳 (𝑡+1)
through

Alg. 1 to obtain 𝑴 (𝑡+1)
by Eq. 12.

3: Track (𝚲(𝑡+1) , 𝑼 (𝑡+1) ) through Alg. 2 by leveraging 𝑴 (𝑡 )

and 𝑴 (𝑡+1)
.

4: Set 𝑼 (𝑡+1)
as 𝑿 (𝑡+1)

in Eq. 11 to form 𝑯 (𝑡+1)
for obtaining

clustering {𝐶 (𝑡+1)
1

, . . . 𝐶
(𝑡+1)
𝑞 }

5: end for

studies. We also provide a case study of using F-SEGA to design a

proportional allocation of human resources.

5.1 Experiment Setup
Real-World Temporal Graphs. HighSchool-2011 [16] stores dy-
namic human contacts, where 126 nodes denote students, and the

28,561 timestamped edges denote the face-to-face contacts between

students during 4 days. The groups of students include males and

females. HighSchool-2013 [35] is another dynamic human contact

graph of 327 high school students during 5 days. The nodes denote

students grouped by males and females, and the 188,509 times-

tamped edges denote contacts. PrimarySchool [22] is a dynamic

interaction graph of 232 students and 10 teachers grouped by males

and females, and 125,773 timestamped edges denote the contacts

among them. ASA [40] stands for a dynamic inter-personal graph,

where 5,767 nodes represent male and female employees from 384

limited companies, and 873,716 timestamped edges represent the

affiliation among employees in 10 years. Hospital [46] is a dynamic

human contact graph among patients and healthcare workers in

a hospital ward for 5 days. 75 nodes in the Hospital graph are

divided into four groups: patients, nurses, medical doctors, and

administrative staff. 32,424 timestamped edges denote the contacts.

Data Pre-processing. Due to different time granularities (e.g.,

seconds and months) and different durations (e.g., 4 days and 10

years) among real-world temporal graphs, we unify all timestamps

into 11 snapshots, where the snapshot 𝐺 (0)
occupies 80% − 90%

of the entire observed graph in terms of the volume (i.e., number

of edges), and each updated edge set Δ𝐸 (𝑡 ) , 𝑡 ∈ {0, . . . , 9} contains
updated edges with the number of 1% − 2% volume of the whole

observed graph.

5.2 Baseline Algorithms
We include spectral clustering algorithms from 3 aspects, i.e., fair
and unfair, low-order and high-order, and static and dynamic.
SC [41] is the standard (i.e., edge-based) spectral clustering aiming

for minimizing 𝑁𝑐𝑢𝑡 . TripSC [9] tracks eigen-pairs of Laplacian

matrix to meet the dynamic spectral clustering baseline. MSC [5]

stands for the motif spectral clustering, which is a high-order algo-

rithm proposed to minimize the number of broken motifs due to

the graph cuts. Different from cliques, motifs do not have to be fully

connected. FSC [29] represents the fair spectral clustering, which

https://github.com/DongqiFu/F-SEGA
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Table 2: Comparison of Effectiveness and Efficiency
Data HighSchool-2011 (Small Number of Clusters) HighSchool-2011 (Large Number of Clusters)

Method \ Metric 𝑁𝑐𝑢𝑡 𝐶𝑃𝑁𝑐𝑢𝑡 Avg. Balance Time (cs) 𝑁𝑐𝑢𝑡 𝐶𝑃𝑁𝑐𝑢𝑡 Avg. Balance Time (cs)

SC 3.1389 ± 0.8599 3.0331 ± 0.9046 0.4596 ± 0.0454 9.5270 ± 2.4491 11.7701 ± 1.0063 11.7578 ± 0.9956 0.2679 ± 0.0245 29.7407 ± 4.3385

TripSC 3.9756 ± 1.0791 3.9507 ± 1.1274 0.4519 ± 0.0669 4.7160 ± 0.2390 12.6620 ± 1.2201 12.4800 ± 1.0953 0.3458 ± 0.0268 5.8290 ± 0.0238

MSC 3.1443 ± 0.8973 2.9554 ± 0.8900 0.3888 ± 0.0850 17.0819 ± 2.1950 12.1444 ± 0.9648 12.1707 ± 0.9624 0.2686 ± 0.0503 47.5360 ± 4.0390

FSC 3.4110 ± 0.7931 3.3047 ± 0.8312 0.4457 ± 0.0185 23.8289 ± 2.3470 11.8866 ± 0.9955 11.9571 ± 1.0047 0.2473 ± 0.0228 55.2460 ± 4.5900

F-SEGA 4.4525 ± 0.9885 4.4435 ± 0.9947 0.6281 ± 0.0851 15.4022 ± 0.9090 13.4689 ± 1.5127 13.4726 ± 1.4659 0.4023 ± 0.0413 15.1860 ± 1.1020

Data HighSchool-2013 (Small Number of Clusters) HighSchool-2013 (Large Number of Clusters)

Method \ Metric 𝑁𝑐𝑢𝑡 𝐶𝑃𝑁𝑐𝑢𝑡 Avg. Balance Time (cs) 𝑁𝑐𝑢𝑡 𝐶𝑃𝑁𝑐𝑢𝑡 Avg. Balance Time (cs)

SC 1.4866 ± 0.4334 0.6458 ± 0.2347 0.4708 ± 0.0135 33.2589 ± 2.3160 8.3264 ± 0.9598 6.9722 ± 0.9852 0.3596 ± 0.0276 55.7780 ± 5.3360

TripSC 1.7915 ± 0.2823 1.0755 ± 0.5641 0.4531 ± 0.0182 27.5309 ± 0.4920 12.4063 ± 0.7526 12.2279 ± 0.8568 0.4568 ± 0.1048 29.5580 ± 7.2800

MSC 1.4664 ± 0.4205 0.6483 ± 0.1829 0.4695 ± 0.0139 63.0641 ± 2.2970 8.4577 ± 1.0816 7.0812 ± 1.1676 0.3971 ± 0.0432 84.5730 ± 4.9880

FSC 1.5203 ± 0.4895 0.6620 ± 0.2860 0.5160 ± 0.0466 52.8459 ± 2.5430 8.3129 ± 0.9832 6.9370 ± 0.9918 0.3430 ± 0.0264 76.1430 ± 5.9880

F-SEGA 1.5296 ± 0.3493 0.6728 ± 0.1800 0.4620 ± 0.0058 23.1415 ± 0.1730 11.1068 ± 1.1258 10.4639 ± 1.1930 0.4481 ± 0.0827 23.2780 ± 0.5130

Data PrimarySchool (Small Number of Clusters) PrimarySchool (Large Number of Clusters)

Method \ Metric 𝑁𝑐𝑢𝑡 𝐶𝑃𝑁𝑐𝑢𝑡 Avg. Balance Time (cs) 𝑁𝑐𝑢𝑡 𝐶𝑃𝑁𝑐𝑢𝑡 Avg. Balance Time (cs)

SC 3.2948 ± 0.7586 3.1690 ± 0.7504 0.7346 ± 0.0621 26.5813 ± 2.9490 7.6632 ± 0.9263 7.4345 ± 0.8838 0.6385 ± 0.0145 33.1950 ± 4.3430

TripSC 3.3368 ± 0.7193 3.1903 ± 0.7137 0.7090 ± 0.0319 17.1575 ± 0.2420 9.0180 ± 0.9117 8.8868 ± 0.9408 0.6235 ± 0.0432 17.2640 ± 0.4350

MSC 3.3528 ± 0.7852 3.1730 ± 0.7744 0.7098 ± 0.0232 74.5010 ± 2.7000 7.4506 ± 0.5170 7.4875 ± 0.8808 0.6775 ± 0.0331 90.0930 ± 4.0000

FSC 3.2830 ± 0.7488 3.1894 ± 0.7390 0.7430 ± 0.0566 49.4491 ± 3.2140 7.6606 ± 0.9217 7.4255 ± 0.8698 0.6747 ± 0.0331 67.6080 ± 4.4381

F-SEGA 3.4018 ± 0.7412 3.2126 ± 0.7205 0.6717 ± 0.0143 21.8349 ± 0.6260 8.7635 ± 1.8539 8.4676 ± 1.7872 0.6338 ± 0.0500 22.1440 ± 0.2928

adds the fairness constraints on the standard spectral clustering to

make the demographics of each cluster close to the whole graph.

For static baselines, we report the clustering result that is solely

obtained on the last snapshot. For dynamic baselines, we report the
tracked clustering result until the last snapshot, whose tracking is
started from the first snapshot. We provide ablations by removing

different components of F-SEGA individually in Appendix E.

5.3 Effectiveness Comparison
Evaluation Metrics. (1) 𝑁𝑐𝑢𝑡 , which measures the compactness

of clustering through broken edges, low 𝑁𝑐𝑢𝑡 score indicates that

clusters are densely connected by edges; (2) 𝐶𝑃𝑁𝑐𝑢𝑡 , which mea-

sures the compactness of clusters in terms of broken 𝑘-cliques, in

experiments we set 𝑘 = 3, low𝐶𝑃𝑁𝑐𝑢𝑡 score indicates that clusters

are densely connected by 𝑘-cliques; (3) Time, which records the

consumed time of each algorithm; (4) Average Balance [29], which

measures the fairness of clustering by calculating the demographics

of each cluster, higher balance 𝑏𝑎𝑙 (·) indicates a cluster is fairer.
𝑁𝑐𝑢𝑡 and𝐶𝑃𝑁𝑐𝑢𝑡 are realized by Eq. 1 by changing the order of N,
and Average Balance is realized as follows.

1

|𝐶𝑙 |
∑︁
𝑙

𝑏𝑎𝑙 (𝐶𝑙 ) =
1

|𝐶𝑙 |
∑︁
𝑙

min

𝑠≠𝑠′∈{1,...,ℎ}
|𝑉𝑠 ∩𝐶𝑙 |
|𝑉𝑠′ ∩𝐶𝑙 |

∈ [0, 1]

Quantitative Analysis. The six settings (i.e., three datasets with
a small number of clusters 𝑞 = {5, 6, 7} and a large number of

clusters 𝑞 = {14, 15, 16}) in Table 2 reflects two scenarios in the

real world. First, the initial distribution of the input graph
is not demographic fair. As shown in HighSchool-2011(Large),

when all other baselines find roughly similar sub-optimal compact

and fair clustering, our F-SEGA identifies a fairer (i.e., higher av-

erage balance) clustering while sacrificing very little compactness

(e.g., competitive low 𝐶𝑃𝑁𝑐𝑢𝑡 ratio). In Highschool-2011(Small)

and HighSchool-2013(Large), the input data is not fairly distributed

either. Our F-SEGA still achieves very competitive fairness scores

with only a little decreases in the compactness metric. Second,
the initial distribution of the input graph is already demo-
graphic fair. For example, no matter with Highschool-2013(Small),

PrimarySchool(Small), or PrimarySchool(Large), the initial distri-

bution is fair as all baselines fall into the same performance level.

Despite some random tracking errors, our F-SEGA still achieves

competitive performance in a very efficient manner.

F-SEGA achieves good overall performance among high-order

density, demographic fairness, and time complexity. TakingHighSchool-

2011 dataset as an example shown in Figure 2, F-SEGA is the closest

one to the comprehensiveness, i.e., the line (𝑥 = 𝑦 = 𝑧).

Figure 2: Comprehensiveness in HighSchool-2011 (Large).

5.4 Parameter Sensitivity
Different choices of the number of clusters (i.e., 𝑞) affect the struc-

ture of clustering. Here, we aim to investigate the performance

consistency of F-SEGA in different clustering settings. To this end,

we evaluate the compactness performance (i.e., 𝐶𝑃𝑁𝑐𝑢𝑡 ) and the

fairness performance (i.e., Average Balance) for different 𝑞 values.

We report the performance on HighSchool-2011. Comparing with

MSC [5] (designed for the high-order but unfair spectral clustering)

at the final snapshot, we have the following observations. (1) In

Figure 3a, 𝐶𝑃𝑁𝑐𝑢𝑡 increases as 𝑞 increases, because more cliques

are cut as the number of clusters increases. (2) In Figure 3b, as 𝑞

increases, the fairness performance (i.e., Average Balance) does not

have a clear increasing or decreasing pattern because it is based on

the distribution of the given data; (3) We can see adding fairness

constraints produces much fairer clustering but costs compactness.

5.5 Case Study
In the case study, we use the proposed F-SEGA to design a propor-

tional strategy for allocating human resources in a hospital ward.
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(a)𝐶𝑃𝑁𝑐𝑢𝑡 w.r.t. 𝑞 (b) Balance w.r.t. 𝑞

Figure 3: Performance on Different Clustering Sizes.

In Hospital graph data, there are four groups of people: patients,

nurses, doctors, and administrative staff. Given their existing con-

nections, it is critical to design an efficient communication and

resource allocation strategy [50]. Ideally, we want healthcare work-

ers and patients to be densely connected in each cluster such that

patients can obtain timely communication and care. Also, each

cluster should contain similar proportions of people from all four

groups to ensure a balanced workload for healthcare workers.

Figure 4: Proportional human resource allocation inHospital
graph. Grey nodes denote patients, blue nodes denote nurses,
red nodes denote medical doctors, and yellows nodes denote
administrative staff.

To this end, we use F-SEGA algorithm to track the clustering of

Hospital graph and show the clustering result on the last snapshot

in Figure 4. Here, we set the triangle as the target clique being

preserved from graph cuts for representing efficient communica-

tion among people and 𝑞 = 6. We observe that F-SEGA produces

a set of clusters that are not only triangle-dense but also contain

similar proportions of people from all four groups. To be specific,

we discover that healthcare workers are assigned densely and pro-

portionally in each cluster, which suggests that F-SEGA could help

dynamically design the human resource allocation in a proportional

and efficient manner given the original connections.

6 RELATEDWORK
Fair Clustering. Fairness constraints in the clustering problems

receive a surge of research interests. Different fair clustering algo-

rithms [6, 11, 14, 25, 26, 29, 32, 49] are designed for different fair

objectives, like protecting minority groups or hiding sensitive at-

tributes. Fair clustering algorithms reduce bias inmany applications,

like computer vision [32]. In [14], researchers aim to protect groups

such that the demographic distribution in every cluster should be

approximately equal to the entire dataset. Different from [14] who

always produces fair clustering results no matter how much cost

increases compared with unfair clustering methods, researchers

in [29] add the fairness constraints on the spectral clustering algo-

rithm to guide a fair clustering result if such result exists but only

pay a little price for the compactness loss of the returned clusters.

High-Order Clustering. For the graph clustering problems, the

standard spectral clustering algorithms [36, 41] study the graph

structure by investigating the eigenvalues and eigenvectors of the

graph Laplacianmatrix. To preserve high-order connection patterns

from cuts, tensor-based spectral clustering methods [4, 51] are

proposed. In [5, 45], a re-weighting method is introduced to model

the high-order patterns, this method represents the input graph

into a weighted two-dimensional matrix where each entry stands

for the number of high-order patterns that edge occupies, then

the eigen-decomposition solution of that two-dimensional matrix

can be used for indicating clustering results to preserve high-order

patterns. This re-weighting method is also adopted to solve the

high-order local clustering problem [53]. In the high-order local

clustering algorithms [21, 53–55], the local cluster is produced by

only exploring a small portion of the entire graph given the seed

node. Recently, authors in [7] consider the heterogeneity among

nodes and edges and propose the high-order spectral clustering

method in heterogeneous graphs.

Dynamic Clustering. For dynamic graphs, early dynamic clus-

tering methods [3, 8] obtain the static clustering results indepen-

dently at each timestamp, then matching or mapping them to inves-

tigate the evolutionary pattern of dynamic graphs. In the dynamic

setting, some methods are proposed for the temporal smoothness

like [12] which prefers the clustering result not only fitting the cur-

rent datawell but also stable and less sensitive to short-term updates.

And some other dynamic clustering methods are proposed for fast

clustering solutions in the dynamic setting, like [9, 10, 34, 37, 38, 52].

For example, in [38], authors propose the incremental spectral clus-

tering method, which incrementally updates the eigenvalues and

eigenvectors of the Laplacian matrix for indicating clustering re-

sults at each timestamp. Most dynamic graph clustering algorithms

focus on edges (i.e., low-order structures) connectivity information.

To the best of our knowledge, F-SEGA is the first attempt to

access high-order clustering under the group fairness constraints in

the dynamic setting, which reconciles the two clustering constraints

with the clustering efficiency.

7 CONCLUSION
In this paper, we propose F-SEGA for fairness-aware and clique-

preserving spectral clustering of temporal graphs. In addition to

the theoretical derivation of F-SEGA and the analysis of its time

complexity, we empirically evaluate the effectiveness, efficiency,

and robustness of F-SEGA. We also provide a case study to show

the real-world application of F-SEGA.
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A PROOF OF PROPOSITION 1
To prove Proposition 1, we need to show the optimal graph cuts
Π
(𝑡 )
∗ at time 𝑡 may not achieve the optimized𝐶𝑃𝑁𝑐𝑢𝑡 ratio at 𝑡 + 1,

which implies the tie graph cuts Π (𝑡 )
= and inferior graph cuts

Π
(𝑡 )
∼ (w.r.t 𝐶𝑃𝑁𝑐𝑢𝑡 ratio) may be chosen as the optimum for time

𝑡 + 1. To give a relatively full analysis, we first discuss that in a

general case that Π
(𝑡 )
∗ is still the optimum at 𝑡 + 1, and give some

extreme cases that it will not be the optimum.

For an insensitive inserted edge, according to Eq. 5, it will only
increase or remain the volume of each cluster of Π

(𝑡 )
∗ and remain

the number of broken cliques. Therefore, the 𝐶𝑃𝑁𝑐𝑢𝑡 ratio of Π
(𝑡 )
∗

remains or in-depth minimizes under the fairness constraint.

• However, extreme cases can happen that Π
(𝑡 )
∼ can be the opti-

mum at 𝑡 + 1 for only insensitive inserted edges. For example, as

shown in Figure 5a (for 3-clique), Δ𝐸 only contains insensitive

inserted edges w.r.t Π
(𝑡 )
∗ , but when the huge number of insensi-

tive updated edges arrives intensively and locally on the right

complement of Π
(𝑡 )
∼ , the volume of the right cluster will increase

dramatically and Π
(𝑡 )
∼ can be Π

(𝑡+1)
∗ . In the real world, the graph

is usually sparse, and each time update is also much smaller com-

pared to the volume of cluster [21], such that we based on this

assumption and infer Π
(𝑡 )
∼ will not be Π

(𝑡+1)
∗ .

• Extreme cases can also happen that Π
(𝑡 )
= is qualified for Π

(𝑡+1)
∗

when the inserted insensitive edges w.r.t Π
(𝑡 )
∗ are also insensitive

to Π
(𝑡 )
= as shown in Figure 5b (for 3-clique). In this scenario,

temporal smoothness [12] will choose Π
(𝑡 )
∗ as Π

(𝑡+1)
∗ , i.e., the

previously selected graph cuts have a preference when tied.

(a) Extreme Case I. (b) Extreme Case II.

Figure 5: Inserted Insensitive Edges Analysis.

For a deleted insensitive edge, if that inter-cluster deleted
edge occupies 𝑠 𝑘-cliques N, then 𝑠 𝑘-cliques will disappear and the

volume of graph 𝐺 (𝑡 )
, 𝜇 (𝐺 (𝑡 ) ,N), will decrease 𝑠 · 𝑘 (𝑘−1)

2
, because

the weights of edges in each of 𝑠 𝑘-cliques are decreased. According

to Eq. 5, for a cluster 𝐶
(𝑡 )
𝑙

, 𝑐𝑢𝑡 (𝐶𝑙 ,𝑉 \𝐶𝑙 ,N) will decrease at most

𝜂 · 𝑠 · 𝑘 (𝑘−1)
2

and 𝜇 (𝐶𝑙 ,N) will decrease at most (1 − 𝜂) · 𝑠 · 𝑘 (𝑘−1)
2

,

𝜂 = 𝜅
𝑘
∈ (0, 1), and 𝜅 ∈ {1, . . . , 𝑘 − 1}. If 𝜂 ≥ 0.5, since 𝜇 (𝐶𝑙 ,N) >

𝑐𝑢𝑡 (𝐶𝑙 ,𝑉 \𝐶𝑙 ,N), the 𝐶𝑃𝑁𝑐𝑢𝑡 ratio of Π
(𝑡 )
∗ will decrease at 𝑡 + 1.

Even 𝜂 → 0, we consider 𝜇 (𝐶𝑙 ,N) ≫ 𝑐𝑢𝑡 (𝐶𝑙 ,𝑉 \ 𝐶𝑙 ,N) then the

𝐶𝑃𝑁𝑐𝑢𝑡 ratio of Π
(𝑡 )
∗ will remain at 𝑡 +1. Thus, the𝐶𝑃𝑁𝑐𝑢𝑡 ratio of

Π
(𝑡 )
∗ remains or in-depth minimizes under the fairness constraint.

• An extreme case as shown in in the Figure 6, Π
(𝑡 )
= achieves the

same 𝐶𝑃𝑁𝑐𝑢𝑡 ratio (𝑘=3) as Π
(𝑡 )
∗ in terms of insensitive deleted

edges. An insensitive deleted edge to Π
(𝑡 )
∗ is also insensitive to

Π
(𝑡 )
= , which means Π

(𝑡 )
= has the change to be Π

(𝑡+1)
∗ . If that hap-

pens, temporal smoothness [12] will still choose Π
(𝑡 )
∗ as Π

(𝑡+1)
∗ ,

i.e., the previous selected graph cuts have preference when tied.

Figure 6: Extreme Case III.

B PROOF OF PROPOSITION 2
We first prove that the proposed Fast Update of Graph Laplacian

method updates Laplacian matrix 𝑳 (𝑡 )
in terms of the 3-clique

requires 𝑂 (𝛼𝑚 (𝑡 ) ) time. Then we generalize the proof to arbitrary

𝑘 . In the outermost for-loop of Alg. 1, node 𝑖 denotes the node with

the larger degree in the updated edge (𝑖, 𝑗). Step 3 and Step 9 require
𝑂 (𝑑 (𝑡 ) (𝑖)) time, and Step 4 requires 𝑂 (∑(𝑖, 𝑗) ∈Δ𝐸 (𝑡 ) 𝑑

(𝑡 ) ( 𝑗)) time,

where 𝑑 (𝑡 ) (𝑢) denotes the standard (i.e., edge-based) degree of the

node 𝑢 and 𝑑 (𝑡 ) (𝑢) =
∑

𝑣∈𝑉 (𝑡 ) 𝐴
(𝑡 ) (𝑢, 𝑣). Therefore, for the total

running time 𝑂 (𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔), we have

𝑂 (𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔) =
∑︁

𝑖∈𝑉
Δ𝐸 (𝑡 )

𝑂 ( 𝑑 (𝑡 ) (𝑖) +
∑︁

(𝑖, 𝑗) ∈Δ𝐸 (𝑡 )

𝑑 (𝑡 ) ( 𝑗))

≤
∑︁

𝑖∈𝑉 (𝑡 )

𝑂 ( 𝑑 (𝑡 ) (𝑖) +
∑︁

(𝑖, 𝑗) ∈Δ𝐸 (𝑡 )

𝑑 (𝑡 ) ( 𝑗))

≤ 𝑂 (𝑚 (𝑡 ) ) +𝑂 (
∑︁

(𝑖, 𝑗) ∈Δ𝐸 (𝑡 )

𝑑 (𝑡 ) ( 𝑗))

≤ 𝑂 (𝑚 (𝑡 ) ) +𝑂 (
∑︁

(𝑢,𝑣) ∈Δ𝐸 (𝑡 )

min{𝑑 (𝑡 ) (𝑢), 𝑑 (𝑡 ) (𝑣)})

(25)

where 𝑉Δ𝐸 (𝑡 ) stands of the set of nodes in Δ𝐸 (𝑡 ) . We assume that

|Δ𝐸 (𝑡 ) | < 𝑚 (𝑡 )
, then according to [13], we have∑︁

(𝑢,𝑣) ∈Δ𝐸 (𝑡 )

min{𝑑 (𝑡 ) (𝑢), 𝑑 (𝑡 ) (𝑣)} ≤ 2𝛼𝑚 (𝑡 )
(26)

where 𝛼 is the arboricity of the graph𝐺 (𝑡 )
and stands for the mini-

mum number of edge-disjoint spanning forests of 𝐺 (𝑡 )
. Note that

the bounded time complexity is independent of the number of up-

dated edges due to the summation. Thus, we have the total running

time 𝑂 (𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔) ≤ 𝑂 (𝛼𝑚 (𝑡 ) ). With the recursion rule of listing

𝑘-clique [13], we can detect the appearance (or disappearance) of

𝑘-cliques at each timestamp by recursively applying Alg. 1 until

𝑘-1=2, and the total time complexity is bounded by 𝑂 (𝑘𝛼𝑘−2𝑚 (𝑡 ) ).

C PROOF OF PROPOSITION 3
First of all, for Step 1 of Alg. 2, we have

𝒖 (𝑡 ) ′
𝑖

Δ𝑴𝒖 (𝑡 )
𝑗

=
∑︁
(𝑠,𝑟 )

Δ𝑀 (𝑠, 𝑟 ) 𝑢 (𝑡 )
𝑖

(𝑠) 𝑢 (𝑡 )
𝑗

(𝑟 ) (27)

where (s,r) stands for the non-zero entry of Δ𝑴 . We denote the

number of non-zero entries of Δ𝑴 as 𝑜 , then Step 1 costs 𝑂 (𝑞2𝑜)
time complexity. Then, compared with the second for-loop (i.e.,

Steps 14–17), it is easy to prove that the dominant part of Alg.2 is
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(a) Ablation in ASA
(w.r.t.𝐶𝑃𝑁𝑐𝑢𝑡 ).

(b) Ablation in ASA
(w.r.t. Avg. Balance).

(c) Ablation in ASA
(w.r.t. Time).

Figure 7: Ablation Study of F-SEGA.

the first for-loop (i.e., Steps 5–12) [10], where the inverse operation

of Step 7 costs 𝑂 (𝑞3), and the multiplication operation of Step 11

costs 𝑂 (𝑛𝑞). Therefore, the first for-loop costs 𝑂 (𝑞4 + 𝑛𝑞2). Since
𝑜 < 𝑛, Alg.2 will cost 𝑂 (𝑞4 + 𝑛𝑞2) in the worst case.

D PROOF OF THEOREM 4.1
F-SEGA consists of two sequential parts, i.e., Laplacian update and

eigen-pairs update. Therefore, the time complexity is easy to be

proved by Proposition 2 and Proposition 3.

E ABLATION STUDIES
Here, we provide ablations by removing different components of

F-SEGA individually. (1) By removing the fairness constraint (i.e.,

Eq. 9), F-SEGA-UF solves the clique-preserving spectral clustering in

the dynamic setting. (2) By replacing the clique-weighted adjacency

matrix𝑾 with the standard adjacency matrix 𝑨, F-SEGA-L targets

to the low-order and fair clustering in the dynamic setting.

Regarding the ablation study in ASA data as shown in Figure 7a-

7c, where the dynamics setting is the same as other datasets, and

the number of clusters 𝑞 is set to be 2. We can see each proposed

technique plays its own role. For example, F-SEGA-L fails to find

high-order dense clustering, and F-SEGA-UF could not identify

a fair clustering. For the time complexity, since the high-order

connections make matrices more sparse, F-SEGA runs faster than F-

SEGA-L, and F-SEGA-UF runs fastest by avoiding intensive inverse

operations for fairness constraints.

F LIMITATIONS
In Eq. 6, matrix 𝑯 is a node-cluster assignment matrix, where each

node belongs to only one cluster. Given the format of 𝑯 in Eq. 6,

the trace of 𝑯⊤𝑳𝑯 exactly equals to 𝐶𝑃𝑁𝑐𝑢𝑡 in Eq. 5. That’s why

minimizing 𝐶𝑃𝑁𝑐𝑢𝑡 equals to minimizing the trace of 𝑯⊤𝑳𝑯 .

Then, if we can obtain𝑯 as Eq. 6 expressed (i.e., 0 and 1/
√︁
𝜇 (𝐶𝑙 ,N)

valued), the clusters can be directly read out from 𝑯 . However, in a

more general case, we need to relax 𝑯 by letting its entries take any

real values. That’s where the approximation originates, and also

the reason we need K-means to infer clusters from the real-valued

matrix 𝑯 .

Using K-means is an effective approximation for classic spectral

clustering [36, 47]. In our setting, i.e., adding fairness constraints

to clustering (i.e., Eq. 3 + Eq. 4), using K-means also has good em-

pirical performance as shown in our experiments or in [29]. To the

best of our knowledge, the theoretical bound of compactness and

fairness for using K-means is still an open problem. In [29], the au-

thors proved that using K-means (in the static setting) can partition

an SBM-generated synthetic graph with a bounded accuracy, but

without fairness error analysis. Currently, K-means is a commonly

used and necessary way to infer clustering, and analyzing the exact

compactness and fairness error bound in the general case is a very

interesting topic.
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