Dynamics in GNNs

Guest Lecture at CS6804 – Machine Learning on Graphs

Dongqi Fu Ph.D. Candidate Department of Computer Science University of Illinois, Urbana-Champaign <u>dongqif2@illinois.edu</u> https://dongqifu.github.io/

Contents

- Part I Introduction of GNNs and Dynamics (Natural and Artificial)
- Part II Natural Dynamics in GNNs
- Q&A

Basics of graph neural networks (GNNs)

• According to [1], the general formula of GNNs can be expressed as

message-passing: information aggregation among hidden
representation vectors of neighbors
$$\mathbf{a}_{v}^{(k)} = AGGREGATE^{(k)}(\{\mathbf{h}_{u}^{(k-1)} : u \in \mathcal{N}(v)\}), \ \mathbf{h}_{v}^{(k)} = COMBINE^{(k)}(\mathbf{h}_{v}^{(k-1)}, \mathbf{a}_{v}^{(k)})$$

• For example, the graph convolutional neural network (GCN) [2] can be instanced as

$$\mathbf{h}_{v}^{(k)} = \textit{ReLU}(\mathbf{W}^{(k-1)} \cdot \textit{MEAN}\{\mathbf{h}_{u}^{(k-1)}, \forall u \in \mathcal{N}(v) \cup \{v\}\})$$

with the original formula as

$$\mathbf{H}^{(k)} = \textit{ReLU}(\hat{\mathbf{A}}\mathbf{H}^{(k-1)}\mathbf{W}^{(k-1)}) \qquad \hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-\frac{1}{2}}\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-\frac{1}{2}} \qquad \tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$$

[1] Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka: How Powerful are Graph Neural Networks? ICLR 2019 [2] Thomas N. Kipf, Max Welling: Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017

GNNs have broad application domains

Computer Vision [1]

Recommender Systems [3]

Natural Language Processing [2]

Drug Discovery [4]

image source: https://realpython.com/

Chen et al.: A Survey on Graph Neural Networks and Graph Transformers in Computer Vision: A Task-Oriented Perspective. CoRR 2022
 Wu et al.: Graph Neural Networks for Natural Language Processing: A Survey. CoRR 2021
 Wang et al.: Graph Learning based Recommender Systems: A Review. IJCAI 2021
 Gaudelet et al.: Utilizing Graph Machine Learning within Drug Discovery and Development. Briefings in Bioinformatics 2021

What are natural dynamics?

- Natural dynamics in graphs [1]
 - Input graphs have the time-evolving components, e.g.,
 - Topology Structures
 - Node-level, edge-level, and (sub)graph-level features, etc.
 - Continuous Time
 - $G = \{A, e = (i, j, t, +/-)\}$
 - Discrete Time
 - $\mathcal{G} = \{A^{(1)}, A^{(1)}, \dots, A^{(T)}\}$

Evolving Graph Structures (Discrete Time Representation)

What are artificial dynamics?

- Artificial dynamics in graphs [1], researchers and practitioners
 - change (e.g., filter, mask, drop, or augment) the existing or
 - construct the non-existing graph-related elements, e.g.,
 - graph topology
 - node/graph attributes
 - GNN gradients, etc.
 - to realize the certain performance upgrade, e.g.,
 - decision accuracy
 - computation efficiency
 - model explanation, etc.

Random Edge Dropping $(A \rightarrow \overline{A})$

What are artificial dynamics?

- Artificial dynamics in graphs [1], researchers and practitioners
 - change (e.g., filter, mask, drop, or augment) the existing or
 - construct the non-existing graph-related elements
 - to realize the certain **performance upgrade**
- In 2003, "artificial jump" [2] is proposed to adjust the graph topology for PageRank realizing the personal ranking function on graphs

[1] Dongqi Fu and Jingrui He: Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future. Frontiers in Big Data 2022
 [2] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, Gene H. Golub: Extrapolation methods for accelerating PageRank computations. WWW 2003

8

Relation between natural and artificial dynamics?

- For natural dynamics,
 - The input graph itself is a sequence of observations based on time
 - E.g., daily world wide web like Facebook, Twitter, etc.
- For artificial dynamics,
 - Researchers and practitioners deliberately modify the components for different interests
 - E.g., imperfect or redundant connections, missing features, etc.
- Can they be combined, i.e., **natural + artificial dynamics**?
 - **Yes**, when the input graph is temporal, and the modification is necessary

How natural dynamics contribute GNNs?

• Considering natural dynamics can help graph machine learning models to capture the temporal correlations among features [1]

- Running?
- Dancing?
- Or just the static model for photography?

How natural dynamics contribute GNNs?

• Considering natural dynamics can help graph machine learning models to capture the temporal correlations among features [1]

- Running? 🗹
- Dancing?

•

Or just the static model for photography?

How natural dynamics contribute GNNs?

- Considering natural dynamics can help graph machine learning models to capture the temporal correlations among features [1]
 - Motion Recognition [2]
 - Time-Series Forecasting [3]
 - Pandemic Classification [4]
 - Social Network Analysis [5]

• Many more ...

How artificial dynamics contribute GNNs?

• Considering artificial dynamics can boost graph machine learning performance [1]

Social Network Anonymization

How artificial dynamics contribute GNNs?

- Considering artificial dynamics can boost graph machine learning performance [1]
 - Privacy-Preserving [2]
 - **Permute the GNN gradients** under the differential privacy constraint
 - Decision Accuracy [3]
 - Add dependency constraints on weight matrices of GNN layers
 - Domain Adaption [4]
 - Graph promoting for large-scale pre-trained graph models on downstream tasks [4]
 - Many more ...

Scope of this tutorial

- Natural dynamics in GNNs
 - We focus on time-evolving graph structures and node features

- Artificial dynamics in GNNs
 - We focus the augmentation strategies on graph structures and node features

Today

- Covered works for natural dynamics in GNNs
 - Temporal GNNs with Convolutional Operations
 - Temporal GNNs with Recurrent Units
 - Temporal GNNs with Time Attention
 - Temporal GNNs with Time Kernel
 - Temporal GNNs with Temporal Point Process

Contents

- Part I Introduction of GNNs and Dynamics (Natural and Artificial)
- Part II Natural Dynamics in GNNs
- Q&A

Roadmap for natural dynamics

- Covered works for natural dynamics in GNNs
 - Temporal GNNs with Convolutional Operations
 - Temporal GNNs with Recurrent Units
 - Temporal GNNs with Time Attention
 - Temporal GNNs with Time Kernel
 - Temporal GNNs with Temporal Point Process

- Task: graph-level representation learning
- Natural dynamic: evolving structures and node features w.r.t time
- **Goal:** graph classification

- Problem Setting
 - Skeleton-based Action Reconstruction
 - or temporal graph classification in the graph research community

- Graph Modeling
 - G = (V,E) on a skeleton sequence with N joints and T timestamps featuring both <u>intra-body</u> and <u>inter-frame</u> connections

•
$$V = \{v_{ti} | t = 1, ..., T, i = 1, ..., N\}$$

the *i*-th joint at time *t*

• $F(v_{ti})$: node feature, containing coordinate vector, estimation confidence, etc.

- $E_S = \{v_{ti}v_{tj}\}$: human body joints same *t*
- $E_F = \{v_{ti}v_{(t+1)i}\}$: a particular joint *i*'s trajectory over time

- Let's start from one single frame at t
 - Spatial Graph Convolutional Neural Network

$$f_{out}(v_{ti}) = \sum_{v_{tj} \in B(v_{ti})} \frac{1}{Z_{ti}(v_{tj})} f_{in}(v_{tj}) \cdot \mathbf{w}(v_{ti}, v_{tj})$$

$$\underset{\text{normalizing term: how many number of nodes that}}{\text{are equivalent to } v_{tj}, \text{ towards } v_{ti}}$$

$$\underset{\text{neighbors of } v_{ti} \ B(v_{ti}) = \{v_{tj} | d(v_{tj}, v_{ti}) \le D\}$$

• which can be realized by GCN layer [2]

- Then, let's consider multiple timestamps
 - Recall the Spatial Graph Convolutional Neural Network

$$f_{out}(v_{ti}) = \sum_{v_{tj} \in B(v_{ti})} \frac{1}{Z_{ti}(v_{tj})} f_{in}(v_{tj}) \cdot \mathbf{w}(v_{ti}, v_{tj})$$
$$B(v_{ti}) = \{v_{tj} | d(v_{tj}, v_{ti}) \leq D\}$$

- For Spatial Temporal Graph Convolution
 - Spatial Temporal Modeling

$$B(v_{ti}) = \{v_{qj} | d(v_{tj}, v_{ti}) \le K, |q - t| \le \lfloor \Gamma/2 \rfloor\}$$

Tempor

Part I - Introduction

Spatial Temporal Graph Convolutional Networks (ST-GCN) [1]

A single frame shares the time, i.e.,

 $E_S = \{v_{ti}v_{tj}\}$: human body joints

intra-snapshot edges

 $f_{out}(v_{ti}) = \sum_{v_{tj} \in B(v_{ti})} \frac{1}{Z_{ti}(v_{tj})} f_{in}(v_{tj}) \cdot \mathbf{w}(v_{ti}, v_{tj})$

spatial graph convolution for a snapshot

- Is that possible that they have different timestamps?
 - In [2], each dynamic protein-protein interaction network has 36 continuous observations (i.e., **36 edge timestamps**)
 - every 12 observations compose a metabolic cycle (i.e., **3 snapshot timestamps**), and each cycle reflects 25 mins in the real world. YDL097C Systematic Name: YFR004W Standard Name: RPN11 YPR108W

Feature Type: ORF, Verified Description: Metalloprotease subunit of 19S regulatory particle; part of 26S proteasome lid: couples the deubiquitination and degradation of proteasome substrates;

[1] Sijie Yan, Yuanjun Xiong, Dahua Lin: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018 [2] Dongqi Fu, Jingrui He: DPPIN: A Biological Repository of Dynamic Protein-Protein Interaction Network Data. IEEE Big Data 2022

Given multiple timestamps (e.g., edge timestamps and snapshot timestamps) in a temporal graph

- RQ1: How to integrate the multiple evolution patterns?
- RQ2: How to encode them for an embedding for temporal graph classification? What evolutions are dominating the graph similarity?
- RQ3: Labeling graph (especially temporal) is costly, how could we leverage fewer labels but effectively?

24

Facing above research questions, in Temp-GFSM [1]

- Multi-Time Evolution
- Multi-Time Attention
- Temporal Graph Few-Shot Metric Learning

In Temp-GFSM [1]

- Multi-Time Evolution (Carrying Multiple Dynamics)
- Multi-Time Attention (Weighting Multiple Dynamics)
- Temporal Graph Few-Shot Metric Learning (New Class Adaption)

In Multi-Time Evolution of Temp-GFSM [1]

- An edge is marked as quadruplet (v_i, v_j, t_e, t_s) , where
 - (v_i, v_j, t_e) means the connection between v_i and v_j exists at time t_e
 - (v_i, v_j, t_e, t_s) means the event (v_i, v_j, t_e) happens in snapshot S^{t_s}

•

In Multi-Time Attention of Temp-GFSM [1]

- Temporal graph G -> representation vector Z
 - Node-Level Lifelong Attention (Select Meaningful Words)
 - Intra-Snapshot Attention (Compose Supportive Sentences)
 - Inter-Snapshot Attention (Finish a Fluent Article with Paragraphs)

3. Temporal Graph Few-Shot Metric Learning

- Task: node-level representation learning
- Natural dynamic: evolving node features w.r.t time
- **Goal:** node feature prediction

- A Deep Learning Framework for Traffic Forecasting
- Problem Setting
 - Traffic Flow Prediction

given past volumes, predict future volumes, with the latent structure

arg max log $P(v_{t+1}, ..., v_{t+H} | v_{t-M+1}, ..., v_t)$

• $v_t \in \mathbb{R}^n$: an observation of n road segments (n nodes in graph), e.g., volume or density

• $w \in \mathbb{R}^{n \times n}$: adjacency matrix of road networks, the shared structure over t

- Extract Spatial Features
 - Similar to previous ST-GCN [2], backbone is GCN

- Extract Temporal Features
 - Other than directly calling GCN on the catenation of temporal features, $v^l = \{v_{t-M+1}, ..., v_t\}$, involve a time convolution on the time series as below

$$v^{l+1} = \Gamma_1^l *_{\mathcal{T}} \operatorname{ReLU}(\Theta^l *_{\mathcal{G}} (\Gamma_0^l *_{\mathcal{T}} v^l))$$

 $v_t \in \mathbb{R}^n$: an observation of n road segments (n nodes in graph), e.g., volume or density

31

Σ.

- Extract Spatial Features
 - Similar to previous ST-GCN [2], backbone is GCN

- Extract Temporal Features
 - Other than directly calling GCN on the catenation of temporal features, $v^l = \{v_{t-M+1}, ..., v_t\}$, involve a time convolution on the time series as below

Part I - Introduction

Spatio-Temporal Graph Convolutional Networks (STGCN) [1]

- Extract Temporal Features
 - Other than directly call GCN on the catenation $v^{l} = \{v_{t-M+1}, ..., v_{t}\}$

 $\operatorname{ReLU}(\Theta^{l} \ast_{\mathcal{G}} (v^{l})) \qquad \bigvee \qquad \operatorname{ReLU}(\Theta^{l} \ast_{\mathcal{G}} (\Gamma_{0}^{l} \ast_{\mathcal{T}} v^{l}))$

- A 1-D kernel along the time axis
 - Could aggregate temporal neighbors to capture temporal behaviors of features (e.g., traffic flows), especially for long-term time-series

Today

- Covered works for natural dynamics in GNNs
 - Temporal GNNs with Convolutional Operations
 - Temporal GNNs with Recurrent Units
 - Temporal GNNs with Time Attention
 - Temporal GNNs with Time Kernel
 - Temporal GNNs with Temporal Point Process

Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

- Task: node-level representation learning
- Natural dynamic: evolving node features w.r.t time
- **Goal:** node feature prediction

Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

- Problem Definition
 - Let's still focus on Traffic Forecasting

$$[\boldsymbol{X}^{(t-T'+1)}, \cdots, \boldsymbol{X}^{(t)}; \mathcal{G}] \xrightarrow{h(\cdot)} [\boldsymbol{X}^{(t+1)}, \cdots, \boldsymbol{X}^{(t+T)}]$$

- But the differences from the previous discussed STGCN are:
 - What if the latent graph structure is directed?
 - How can be deal with time information other than time convolution, e.g., how to take time information recurrently?

- For directed graph structure
 - (1) Stationary distribution of the diffusion process

$$\boldsymbol{\mathcal{P}} = \sum_{k=0}^{\infty} \alpha (1-\alpha)^k \left(\boldsymbol{D}_O^{-1} \boldsymbol{W} \right)^k$$

• (2) Diffusion Convolution

$$\boldsymbol{X}_{:,p} \star_{\mathcal{G}} f_{\boldsymbol{\theta}} = \sum_{k=0}^{K-1} \left(\theta_{k,1} \left(\boldsymbol{D}_{O}^{-1} \boldsymbol{W} \right)^{k} + \theta_{k,2} \left(\boldsymbol{D}_{I}^{-1} \boldsymbol{W}^{\mathsf{T}} \right)^{k} \right) \boldsymbol{X}_{:,p} \quad \text{for } p \in \{1, \cdots, P\}$$

• (3) Diffusion Convolution Layer

$$\boldsymbol{H}_{:,q} = \boldsymbol{a} \left(\sum_{p=1}^{P} \boldsymbol{X}_{:,p} \star_{\mathcal{G}} f_{\boldsymbol{\Theta}_{q,p,:,:}} \right) \quad \text{for } q \in \{1, \cdots, Q\}$$

let's step into each one of those

- For directed graph structure
 - (1) Stationary distribution of the diffusion process can be represented as a weighted combination of infinite random walks on the graph

$$\boldsymbol{\mathcal{P}} = \sum_{k=0}^{\infty} \alpha (1-\alpha)^k \left(\boldsymbol{D}_O^{-1} \boldsymbol{W} \right)^k$$

- For directed graph structure
 - (1) Stationary distribution of the diffusion process can be represented as a weighted combination of infinite random walks on the graph

 D_0 : out-degree diagonal matrix

$$\mathcal{P} = \sum_{k=0}^{\infty} \alpha (1-\alpha)^k \left(\mathbf{D}_O^{-1} \mathbf{W} \right)^k$$

k: random walk steps

 $\mathcal{P} \in \mathbb{R}^{N \times N}$: whose *i*-th row represents the likelihood of diffusion (i.e., personalized PageRank vector) from node *i*

- For directed graph structure
 - (2) Diffusion Convolution **over** a graph signal $X \in \mathbb{R}^{N \times P}$ and a filter f_{θ} is defined as

$$\boldsymbol{X}_{:,p} \star_{\mathcal{G}} f_{\boldsymbol{\theta}} = \sum_{k=0}^{K-1} \left(\theta_{k,1} \left(\boldsymbol{D}_{O}^{-1} \boldsymbol{W} \right)^{k} + \theta_{k,2} \left(\boldsymbol{D}_{I}^{-1} \boldsymbol{W}^{\mathsf{T}} \right)^{k} \right) \boldsymbol{X}_{:,p} \quad \text{for } p \in \{1, \cdots, P\}$$

- For directed graph structure
 - (2) Diffusion Convolution **over** a graph signal $X \in \mathbb{R}^{N \times P}$ and a filter f_{θ} is defined as

feature matrix, N is the num of node, P is the node feature dimension learnable parameter, i.e., weight matrices

$$\boldsymbol{X}_{:,p} \star_{\mathcal{G}} \boldsymbol{f}_{\boldsymbol{\theta}} = \sum_{k=0}^{K-1} \left(\theta_{k,1} \left(\boldsymbol{D}_{O}^{-1} \boldsymbol{W} \right)^{k} + \theta_{k,2} \left(\boldsymbol{D}_{I}^{-1} \boldsymbol{W}^{\mathsf{T}} \right)^{k} \right) \boldsymbol{X}_{:,p} \quad \text{for } p \in \{1, \cdots, P\}$$

- For directed graph structure ٠
 - (2) Diffusion Convolution **over** a graph signal $X \in \mathbb{R}^{N \times P}$ and a filter f_{θ} is defined as ٠

feature matrix, *N* is the num of node, learnable parameter, *P* is the node feature dimension

i.e., weight matrices

out-degree based in-degree based $\boldsymbol{X}_{:,p} \star_{\mathcal{G}} f_{\boldsymbol{\theta}} = \sum_{k=0}^{K-1} \begin{pmatrix} \text{diffusion} & \text{diffusion} \\ \left(\boldsymbol{D}_{O}^{-1}\boldsymbol{W}\right)^{k} + \theta_{k,2} \left(\boldsymbol{D}_{I}^{-1}\boldsymbol{W}^{\mathsf{T}}\right)^{k} \end{pmatrix} \boldsymbol{X}_{:,p} \quad \text{for } p \in \{1, \cdots, P\}$ feature matrix two sets of parameters from f_{A}

- For directed graph structure
 - (3) Diffusion Convolution Layer that maps *P*-dimensional features to *Q*-dimensional outputs

$$\boldsymbol{H}_{:,q} = \boldsymbol{a} \left(\sum_{p=1}^{P} \boldsymbol{X}_{:,p} \star_{\mathcal{G}} f_{\boldsymbol{\Theta}_{q,p,:,:}} \right) \quad \text{for } q \in \{1, \cdots, Q\}$$

- For directed graph structure
 - (3) Diffusion Convolution Layer that maps *P*-dimensional features to *Q*-dimensional outputs

- After for directed graph structure,
 - (1) Stationary distribution of the diffusion process
 - (2) Diffusion Convolution
 - (3) Diffusion Convolution Layer
- How to take time information recurrently?
 - Temporal Dynamics Modeling [1]

- Temporal Dynamics Modeling
 - Adopt the logic from Gated Recurrent Units (GRU)[2], i.e., make GRU take structured information

Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018
Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, Yoshua Bengio: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR (2014)

- Temporal Dynamics Modeling
 - Adopt the logic from Gated Recurrent Units (GRU)[2], i.e., make GRU take structured information

• Input
$$oldsymbol{X}^{(t)}, oldsymbol{H}^{(t-1)}$$

• Reset Gate $\boldsymbol{r}^{(t)} = \sigma(\boldsymbol{\Theta}_r \star_{\mathcal{G}} [\boldsymbol{X}^{(t)}, \ \boldsymbol{H}^{(t-1)}] + \boldsymbol{b}_r)$

• Update Gate $\boldsymbol{u}^{(t)} = \sigma(\boldsymbol{\Theta}_u \star_{\mathcal{G}} [\boldsymbol{X}^{(t)}, \ \boldsymbol{H}^{(t-1)}] + \boldsymbol{b}_u)$

diffusion convolution w. different weight parameters

• Output $H^{(t)} = u^{(t)} \odot H^{(t-1)} + (1 - u^{(t)}) \odot C^{(t)}$

$$C^{(t)} = \tanh(\boldsymbol{\Theta}_C \star_{\mathcal{G}} [\boldsymbol{X}^{(t)}, (\boldsymbol{r}^{(t)} \odot \boldsymbol{H}^{(t-1)})] + \boldsymbol{b}_c)$$

Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018
Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, Yoshua Bengio: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR (2014)

- Experiments
 - Datasets
 - METR-LA: Highway of Los Angeles
 - 207 sensors (traffic speed)
 - May 1st 2012 to Jun 30th 2012
 - PEMS-BAY: Highway in Bay Area of California
 - 325 sensors (traffic speed)
 - Jan 1st 2017 to May 31th 2017

(a) METR-LA

(b) PEMS-BAY

Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

Experiments ٠

Performance (traffic speed forecasting)											
	T	Metric	HA	$ARIMA_{Kal}$	VAR	SVR	FNN	FC-LSTM	DCRNN		
METR-LA	15 min	MAE	4.16	3.99	4.42	3.99	3.99	3.44	2.77		
		RMSE	7.80	8.21	7.89	8.45	7.94	6.30	5.38		
		MAPE	13.0%	9.6%	10.2%	9.3%	9.9%	9.6%	7.3%		
	30 min	MAE	4.16	5.15	5.41	5.05	4.23	3.77	3.15		
		RMSE	7.80	10.45	9.13	10.87	8.17	7.23	6.45		
		MAPE	13.0%	12.7%	12.7%	12.1%	12.9%	10.9%	8.8 %		
	1 hour	MAE	4.16	6.90	6.52	6.72	4.49	4.37	3.60		
		RMSE	7.80	13.23	10.11	13.76	8.69	8.69	7.59		
		MAPE	13.0%	17.4%	15.8%	16.7%	14.0%	13.2%	10.5%		
PEMS-BAY	15 min	MAE	2.88	1.62	1.74	1.85	2.20	2.05	1.38		
		RMSE	5.59	3.30	3.16	3.59	4.42	4.19	2.95		
		MAPE	6.8%	3.5%	3.6%	3.8%	5.19%	4.8%	2.9%		
	30 min	MAE	2.88	2.33	2.32	2.48	2.30	2.20	1.74		
		RMSE	5.59	4.76	4.25	5.18	4.63	4.55	3.97		
		MAPE	6.8%	5.4%	5.0%	5.5%	5.43%	5.2%	3.9%		
	1 hour	MAE	2.88	3.38	2.93	3.28	2.46	2.37	2.07		
		RMSE	5.59	6.50	5.44	7.08	4.98	4.96	4.74		
		MAPE	6.8%	8.3%	6.5%	8.0%	5.89%	5.7%	4.9%		

(a) METR-LA

⁽b) PEMS-BAY

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

The latent graph structure may be not easy to observe

• In DCRNN[1], the adjacency is hand-crafted

$$W_{ij} = \exp\left(-\frac{\operatorname{dist}(v_i, v_j)^2}{\sigma^2}\right)$$

(a) METR-LA

(b) PEMS-BAY

• Could we find another way to extract that latent structure?

Could we find another way to extract that latent structure?

- Discrete Graph Structure Learning for Forecasting Multiple Time Series (GTS) [2]
 - Focusing on the same problem (i.e., traffic forecasting) and the same diffusion convolution structure as DCRNN [1]

$$[\boldsymbol{X}^{(t-T'+1)},\cdots,\boldsymbol{X}^{(t)};\boldsymbol{\mathcal{G}} \xrightarrow{h(\cdot)} [\boldsymbol{X}^{(t+1)},\cdots,\boldsymbol{X}^{(t+T)}]$$

• But set the adjacency matrix as a variable to learn $A_{ij} = \operatorname{sigmoid}((\log(\theta_{ij}/(1 - \theta_{ij})) + (g_{ij}^1 - g_{ij}^2))/s)$ samples from a given Gumbel distribution

 $z^i = \operatorname{FC}(\operatorname{vec}(\operatorname{Conv}(X^i))) \ X^i$: the *i*-th node over all features and timestamps

In the same datasets with [1], i.e., METR-LA and PEMS-BAY

- Experiments
 - Performance (traffic speed forecasting)

	Metric	FNN	LSTM	DCRNN	LDS	NRI	GTSv	GTS
15 min	MAE ($\times 10^{-3}$)	1.23	1.02	0.71	0.49	0.66	0.26	0.24
	RMSE (× 10^{-2})	1.28	1.63	1.42	1.26	0.27	0.20	0.19
	MAPE	0.20%	0.21%	0.09%	0.07%	0.14%	0.05%	0.04%
30 min	MAE ($\times 10^{-3}$)	1.42	1.11	1.08	0.81	0.71	0.31	0.30
	RMSE ($\times 10^{-2}$)	1.81	2.06	1.91	1.79	0.30	0.23	0.22
	MAPE	0.23%	0.20%	0.15%	0.12%	0.15%	0.05%	0.05%
60 min	MAE ($\times 10^{-3}$)	1.88	1.79	1.78	1.45	0.83	0.39	0.41
	RMSE (× 10^{-2})	2.58	2.75	2.65	2.54	0.46	0.32	0.30
	MAPE	0.29%	0.27%	0.24%	0.22%	0.17%	0.07%	0.07%

(a) METR-LA

(b) PEMS-BAY

In DCRNN [1] or GTS [2],

- The adjacency is fixed with evolving node features
- What if the adjacency is also evolving?

- For evolving structures and features
 - EvolveGCN [3] is proposed to adapt model parameters, i.e.,
 - Each time has its own GCN model with its $A^{(t)}$ and $H^{(t)}$
 - Cross timestamps, the model parameters are dependent, e.g., $W_t^{(l)} = LSTM(W_{t-1}^{(l)})$

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018
[2] Chao Shang, Jie Chen, Jinbo Bi: Discrete Graph Structure Learning for Forecasting Multiple Time Series. ICLR 2021
[3] Pareja et al.: EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. AAAI 2020

In DCRNN [1] or GTS [2],

- The adjacency is fixed with evolving node features
- What if the adjacency is also evolving?
- Can we also predict the future adjacency?

a) METRLA (b) PEMS BAY

- For evolving structures and features
 - VGRNN [3] is proposed to learn the variational posterior distribution of evolving adjacency structures together, in the RNN structure $(z^{(i)})$ $\frac{1}{2}$ $(z^{(i)})$ $\frac{1}{2}$ $(z^{(i)})$ $\frac{1}{2}$ $(z^{(i)})$

Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018
Chao Shang, Jie Chen, Jinbo Bi: Discrete Graph Structure Learning for Forecasting Multiple Time Series. ICLR 2021
Hajiramezanali et al.: Variational Graph Recurrent Neural Networks. NeurIPS 2019

In this tutorial

- Covered works for natural dynamics in GNNs
 - Temporal GNNs with Convolutional Operations
 - Temporal GNNs with Recurrent Units
 - Temporal GNNs with Time Attention
 - Temporal GNNs with Time Kernel
 - Temporal GNNs with Temporal Point Process

- Task: node-level representation learning
- Natural dynamic: evolving graph structures and node features w.r.t time
- Goal: link prediction

- Problem Definition (Link Prediction)
 - Given a series of graph snapshots $\{\mathcal{G}^1, ..., \mathcal{G}^T\}$, and $\mathcal{G}^t = (\mathbf{A}^t, \mathbf{X}^t)$, DySAT [1] aims to learn the node representation e_v^t for each node v at timestamps $t = \{1, 2, ..., T\}$
 - Then, the <u>latest</u> time e_v^T and e_u^T are used to decide if there is an edge links node v and node u at time T+1

- Structural Self-Attention
 - Apply attention in one single timestamp
 - Topological neighbors
- Temporal Self-Attention
 - Apply attention across timestamps
 - Temporal neighbors

- Structural Self-Attention
 - At a single timestamp t, the superscript of t is omitted in the following equation

- Temporal Self-Attention
 - Who are temporal neighbors for a certain node?
 - Temporal neighbors for node *v* consist of its **historical behaviors**

- Temporal Self-Attention
 - Temporal neighbors for node v consist of its historical behaviors

- Temporal Self-Attention
 - Temporal neighbors for node *v* are its historical behaviors

$$Z_{\upsilon} = \boldsymbol{\beta}_{\upsilon}(X_{\upsilon}W_{\upsilon}), \qquad \beta_{\upsilon}^{ij} = \frac{\exp(e_{\upsilon}^{ij})}{\sum\limits_{k=1}^{T} \exp(e_{\upsilon}^{ik})}, \qquad \qquad M_{ij} = \begin{cases} 0, & i \leq j \\ -\infty, & \text{otherwise} \end{cases}$$
$$e_{\upsilon}^{ij} = \left(\frac{((X_{\upsilon}W_{q})(X_{\upsilon}W_{k})^{T})_{ij}}{\sqrt{F'}} + M_{ij}\right) \qquad \qquad \text{when } M_{ij} = -\infty, \beta_{\upsilon}^{ij} = 0, \text{ which switches off the attention from timestamp } i \text{ to } j \end{cases}$$

- Structural + Temporal Self-Attention
 - Obtain structural encoding independently at each timestamp t
 - Then, temporal self-attention take the structural encoding as input to attend over timestamps

- Structural + Temporal Self-Attention
 - Obtain structural encoding independently at each timestamp t
 - Then, temporal self-attention take the structural encoding as input to attend over timestamps t_1 t_2 t_{r-1} t_r Timeline

- Structural + Temporal Self-Attention
 - Obtain structural encoding independently at each timestamp t
 - Then, temporal self-attention take the structural encoding as input to attend over timestamps + positional encoding

- Structural + Temporal Self-Attention
 - Add the absolute temporal position of each snapshot

$\boldsymbol{h}_{v}^{1} + \boldsymbol{p}^{1}, \boldsymbol{h}_{v}^{2} + \boldsymbol{p}^{2}, \dots, \boldsymbol{h}_{v}^{T} + \boldsymbol{p}^{T}$

[1] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks. WSDM 2020

Positional Encoding

image source: https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/

In this tutorial

- Covered works for natural dynamics in GNNs
 - Temporal GNNs with Convolutional Operations
 - Temporal GNNs with Recurrent Units
 - Temporal GNNs with Time Attention
 - Temporal GNNs with Time Kernel
 - Temporal GNNs with Temporal Point Process

Back to the positional encoding

- Do we have other options?
 - A concurrent method [1] with DySAT [2] proposes the time kernel function to record the time features

 Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, Kannan Achan: Inductive representation learning on temporal graphs. ICLR 2020
Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks. WSDM 2020

Inductive Representation Learning on Temporal Graphs (TGAT) [1]

- Task: node-level representation learning
- Natural dynamic: evolving graph structures and node features w.r.t time
- **Goal:** link prediction, node classification

Inductive Representation Learning on Temporal Graphs (TGAT) [1]

• In [1], **kernel function** is proposed to map time *t* to a finite dimensional representation vector

$$t \mapsto \Phi_d(t) := \sqrt{\frac{1}{d}} \left[\cos(\omega_1 t), \sin(\omega_1 t), \dots, \cos(\omega_d t), \sin(\omega_d t) \right]$$

Inductive Representation Learning on Temporal Graphs (TGAT) [1]

• Suppose there is a target node v_0 at time t, which needs to attend over its spatial-temporal neighbors

$$\mathcal{N}(v_0;t) = \{v_1,\ldots,v_N\}$$

• For each node v_i , v_0 connects with it previously at a time t_i , i.e., $t_i < t$

Inductive Representation Learning on Temporal Graphs (TGAT) [1]

- With $\mathcal{N}(v_0; t) = \{v_1, \dots, v_N\}, t_i < t$
- First, append the position encoding by time kernel functions, to form Z(t)

$$\mathbf{Z}(t) = \begin{bmatrix} \mathbf{\tilde{h}}_{0}^{(l-1)}(t) || \Phi_{d_{T}}(0), \mathbf{\tilde{h}}_{1}^{(l-1)}(t_{1}) || \Phi_{d_{T}}(t-t_{1}), \dots, \mathbf{\tilde{h}}_{N}^{(l-1)}(t_{N}) || \Phi_{d_{T}}(t-t_{N}) \end{bmatrix}^{\mathsf{T}}$$

$$\mathbf{Z}(t) \text{ is the intermediate}$$

$$\mathbf{R}(t) \text$$

Inductive Representation Learning on Temporal Graphs (TGAT) [1]

- With $\mathcal{N}(v_0; t) = \{v_1, \dots, v_N\}, t_i < t$
- Append the position encoding by time kernel functions

$$\mathbf{Z}(t) = \left[\tilde{\mathbf{h}}_{0}^{(l-1)}(t) || \Phi_{d_{T}}(0), \tilde{\mathbf{h}}_{1}^{(l-1)}(t_{1}) || \Phi_{d_{T}}(t-t_{1}), \dots, \tilde{\mathbf{h}}_{N}^{(l-1)}(t_{N}) || \Phi_{d_{T}}(t-t_{N})\right]^{\mathsf{T}}$$

• Self-Attention $\mathbf{q}(t) = [\mathbf{Z}(t)]_{0} \mathbf{W}_{Q}$ $\mathbf{K}(t) = [\mathbf{Z}(t)]_{1:N} \mathbf{W}_{K} \qquad \mathbf{h}(t) = \operatorname{Attn}(\mathbf{q}(t), \mathbf{K}(t), \mathbf{V}(t))$ $\mathbf{V}(t) = [\mathbf{Z}(t)]_{1:N} \mathbf{W}_{V}$ • Readout

adout
$$\tilde{\mathbf{h}}_{0}^{(l)}(t) = \text{FFN}\left(\mathbf{h}(t)||\mathbf{x}_{0}\right) \equiv \text{ReLU}\left([\mathbf{h}(t)||\mathbf{x}_{0}]\mathbf{W}_{0}^{(l)} + \mathbf{b}_{0}^{(l)}\right)\mathbf{W}_{1}^{(l)} + \mathbf{b}_{1}^{(l)}$$

Other Time Kernel Functions [1]

Feature maps specified by $[\phi_{2i}(t), \phi_{2i+1}(t)]$	Origin	Parameters	Interpretations of ω
$\left[\cos\left(\omega_i(\mu)t\right),\sin\left(\omega_i(\mu)t\right)\right]$	Bochner's	μ : location-scale parameters specified for the <i>reparametrization</i> <i>trick</i> .	$\omega_i(\mu)$: converts the i^{th} sample (drawn from auxiliary distribution) to target distribution under location-scale parameter μ .
$\left[\cos\left(g_{\theta}(\omega_i)t\right),\sin\left(g_{\theta}(\omega_i)t\right)\right]$	Bochner's	θ : parameters for the inverse CDF $F^{-1} = g_{\theta}.$	ω_i : the <i>i</i> th sample drawn from the auxiliary distribution.
$ig[\cos(ilde{\omega_i}t),\sin(ilde{\omega_i}t)ig]$	Bochner's	$\{\tilde{\omega}\}_{i=1}^{d}$: transformed samples under non-parametric inverse CDF transformation.	$\tilde{\omega}_i$: the <i>i</i> th sample of the underlying distribution $p(\omega)$ in Bochner's Theorem.
$\begin{bmatrix} \sqrt{c_{2i,k}} \cos(\omega_j t), \\ \sqrt{c_{2i+1,k}} \sin(\omega_j t) \end{bmatrix}$	Mercer's	$\{c_{i,k}\}_{i=1}^{2d}$: the Fourier coefficients of corresponding \mathcal{K}_{ω_j} , for $j = 1, \dots, k$.	ω_j : the frequency for kernel function \mathcal{K}_{ω_j} (can be parameters).

[1] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, Kannan Achan: Self-attention with Functional Time Representation Learning. NeurIPS 2019

Today

- Covered works for natural dynamics in GNNs
 - Temporal GNNs with Convolutional Operations
 - Temporal GNNs with Recurrent Units
 - Temporal GNNs with Time Attention
 - Temporal GNNs with Time Kernel
 - Temporal GNNs with Temporal Point Process

- Task: node-level representation learning
- Natural dynamic: evolving graph structures and node features w.r.t time
- **Goal:** link prediction

- Temporal Point Process (TPP) [2]
 - A user is tweeting, they tweeted at time t_1 = 8:00 am, t_2 = 10:00 am, t_3 = 11:00 am, what is t_4 = ?

• TPP is a model that could fit the process of t_1 , t_2 , and t_3 to predict t_4

[1] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha: DyRep: Learning Representations over Dynamic Graphs. ICLR 2019 [2] Upadhyay et al., Temporal Point Processes: https://courses.mpi-sws.org/hcml-ws18/lectures/TPP.pdf

- Temporal Point Process (TPP) [2]
 - Given the history of events $\mathcal{H}(t) = \{t_1, ..., t_{i-1}\}$, we need to model,

- A conditional probability density function $f^* = f(t|\mathcal{H}(t))$, which is the conditional probability that the next event t will occur during the interval [t, t+dt)
- A cumulative distribution function $F^*(t) = F(t|\mathcal{H}(t)) = \int_{t_{i-1}}^t f^*(\tau) d\tau$, which is the conditional probability that the next event will occur before t
- A complementary of $F^*(t)$, $S^*(t) = S(t|\mathcal{H}(t)) = 1 F^*(t)$, the conditional probability that the next event will not occur before time t

- Temporal Point Process (TPP) [2]
 - Given the history $\mathcal{H}(t) = \{t_1, ..., t_{i-1}\}$, we need to model,
 - $f^*(t) = f(t|\mathcal{H}(t))$: next event t will occur during the interval [t, t+dt)
 - $F^*(t) = F(t|\mathcal{H}(t)) = \int_{t_{i-1}}^t f^*(\tau) d\tau$: next event will occur before t
 - $S^*(t) = S(t|\mathcal{H}(t)) = 1 F^*(t)$: next event will not occur before time t

- Temporal Point Process (TPP) [2]
 - The conditional intensity function $\lambda^*(t) = \lambda(t|\mathcal{H}(t))$, i.e., the conditional probability that the next event will happened during [t, t+dt), is defined as follows

- $\lambda^*(t)$ can be also understood as the instantaneous rate of events per time of unit, e.g., $\lambda^*(t) = 10$ tweets/minute
- Using the form of $\lambda^*(t)$ also contributes to TPP model parameterization and model reusability [2]

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha: DyRep: Learning Representations over Dynamic Graphs. ICLR 2019
 Upadhyay et al., Temporal Point Processes: https://courses.mpi-sws.org/hcml-ws18/lectures/TPP.pdf

- Temporal Point Process (TPP) [2]
 - Different forms of functions model the intensity function $\lambda^*(t)$, e.g.,
 - Homogeneous Poisson process
 - $\lambda^*(t) = \mu \ge 0$

10 tweets/minute

- Inhomogeneous Poisson process
 - $\lambda^*(t) = g_\theta(t) \ge 0$

2 tweets/@8:35am, 25 tweets/@2:58pm, ...

Hawkes process

•
$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_{\omega}(t - t_i), \ \kappa_{\omega}(t) = \exp(-\omega t)$$

• The parameters are obtained by fitting the model with the observation and maximizing the log-likelihood

- Model Temporal Point Process (TPP) for Graphs
 - Each edge connection is considering as an event (u, v, t)
 - We want to predict whether a node *u* and a node *v* will connect at time *t*, given node *u*'s history and node *v*'s history before *t*

- Model Temporal Point Process (TPP) for Graphs
 - Intensity functions for graphs, i.e., an edge connection between nodes u and v

 $\lambda^{u,v}(t) = f(g^{u,v}(\bar{t}))$

 \bar{t} means the timestamp just before the current event

- Model Temporal Point Process (TPP) for Graphs
 - Intensity functions for graphs, i.e., an edge connection between nodes u and v

• Now, the question is how to get the node embeddings, e.g., $z^{\nu}(\bar{t})$?

- Model Temporal Point Process (TPP) for Graphs
 - How to get node embeddings, e.g., $z^{\nu}(\bar{t})$?
 - Self-Propagation: w.r.t its historical behavior
 - Exogeneous Drive: for the smooth update of the current
 - Localized Embedding Propagation: message passing within second-order proximity
 - Suppose node *u* and node *v* participating in any type of event at time *t*
 - E.g., for the *p*-th event of node *v* at time *t*

$$\mathbf{z}^{v}(t_{p}) = \sigma(\underbrace{\mathbf{W}^{struct}\mathbf{h}^{u}_{struct}(\bar{t_{p}})}_{\text{Localized Embedding Propagation}} + \underbrace{\mathbf{W}^{rec}\mathbf{z}^{v}(\bar{t_{p}})}_{\text{Self-Propagation}} + \underbrace{\mathbf{W}^{t}(t_{p} - \bar{t_{p}})}_{\text{Exogenous Drive}})$$

- Suppose node *u* and node *v* participating in any type of event at time *t*
 - For the *p*-th event of node *v* at time *t*

 $\mathbf{z}^{v}(t_{p}) = \sigma(\underbrace{\mathbf{W}^{struct}\mathbf{h}^{u}_{struct}(\bar{t_{p}})}_{\text{Localized Embedding Propagation}} + \underbrace{\mathbf{W}^{rec}\mathbf{z}^{v}(\bar{t_{p}})}_{\text{Self-Propagation}} + \underbrace{\mathbf{W}^{t}(t_{p} - \bar{t_{p}})}_{\text{Exogenous Drive}})$ $h^{u}_{struc} \text{ is the aggregation on node } u' \text{ s neighbors}$ $h^{u}_{struc}(\bar{t}) = \max(\{\sigma\left(q_{ui}(\bar{t}) \cdot h^{i}(\bar{t})\right), \forall i \in N_{u}(\bar{t})\})$ $q_{ui}(\bar{t}) \text{ can be understood as the weight of the connection}$

Today

- Covered works for natural dynamics in GNNs
 - Temporal GNNs with Convolutional Operations
 - Temporal GNNs with Recurrent Units
 - Temporal GNNs with Time Attention
 - Temporal GNNs with Time Kernel
 - Temporal GNNs with Temporal Point Process

There are also many great research works on natural dynamics

- Ma et al. Streaming Graph Neural Networks. SIGIR 2020
- Rossi et al. Temporal Graph Networks for Deep Learning on Dynamic Graphs. CoRR (2020)
- Tian et al. Self-supervised Representation Learning on Dynamic Graphs. CIKM 2021
- Fu et al. SDG: A Simplified and Dynamic Graph Neural Network. SIGIR 2021
- You et al. **ROLAND: Graph Learning Framework for Dynamic Graphs**. KDD 2022
- Cong et al. Do We Really Need Complicated Model Architectures For Temporal Networks? ICLR 2023
- Many more.....

Guest Lecture at CS6804 – Machine Learning on Graphs

Dongqi Fu Ph.D. Candidate Department of Computer Science University of Illinois, Urbana-Champaign <u>dongqif2@illinois.edu</u> https://dongqifu.github.io/

