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Basics of graph neural networks (GNNs)

• According to [1], the general formula of GNNs can be expressed as

• For example, the graph convolutional neural network (GCN) [2] can be instanced as

with the original formula as

𝒉𝑣
(𝑘)

: is the hidden representation of node 𝑣
at the 𝑘-th layer

message-passing: information aggregation among hidden 
representation vectors of neighbors

[1] Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka: How Powerful are Graph Neural Networks? ICLR 2019

[2] Thomas N. Kipf, Max Welling: Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017
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GNNs have broad application domains

Computer Vision [1] Natural Language Processing [2]

Recommender Systems [3] Drug Discovery [4]

image source: https://realpython.com/

[1] Chen et al.: A Survey on Graph Neural Networks and Graph Transformers in Computer Vision: A Task-Oriented Perspective. CoRR 2022

[2] Wu et al.: Graph Neural Networks for Natural Language Processing: A Survey. CoRR 2021

[3] Wang et al.: Graph Learning based Recommender Systems: A Review. IJCAI 2021

[4] Gaudelet et al.: Utilizing Graph Machine Learning within Drug Discovery and Development. Briefings in Bioinformatics 2021
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[1] Dongqi Fu and Jingrui He: Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future. Frontiers in Big Data 2022

What are natural dynamics?

• Natural dynamics in graphs [1]

• Input graphs have the time-evolving components, e.g.,

• Topology Structures

• Node-level, edge-level, and (sub)graph-level features, etc.

• Continuous Time

• 𝒢 = {𝐴, 𝑒 = (𝑖, 𝑗, 𝑡,+/-)}

• Discrete Time

• 𝒢 = {𝐴 1 , 𝐴 1 , … , 𝐴 𝑇 }

Evolving Graph Structures (Discrete Time Representation)

Part I - Introduction Part II – Natural Dynamics
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[1] Dongqi Fu and Jingrui He: Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future. Frontiers in Big Data 2022

What are artificial dynamics?

• Artificial dynamics in graphs [1], researchers and practitioners

• change (e.g., filter, mask, drop, or augment) the existing or

• construct the non-existing graph-related elements, e.g.,

• graph topology

• node/graph attributes

• GNN gradients, etc. 

• to realize the certain performance upgrade, e.g.,

• decision accuracy

• computation efficiency

• model explanation, etc. Random Edge Dropping (𝐴 → ҧ𝐴)
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[1] Dongqi Fu and Jingrui He: Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future. Frontiers in Big Data 2022

[2] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, Gene H. Golub: Extrapolation methods for accelerating PageRank computations. WWW 2003

What are artificial dynamics?

• Artificial dynamics in graphs [1], researchers and practitioners

• change (e.g., filter, mask, drop, or augment) the existing or

• construct the non-existing graph-related elements

• to realize the certain performance upgrade

• In 2003, “artificial jump” [2] is proposed to adjust the graph topology for PageRank 
realizing the personal ranking function on graphs
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Relation between natural and artificial dynamics?

• For natural dynamics,

• The input graph itself is a sequence of observations based on time

• E.g., daily world wide web like Facebook, Twitter, etc.

• For artificial dynamics,

• Researchers and practitioners deliberately modify the components for different interests

• E.g., imperfect or redundant connections, missing features, etc.

• Can they be combined, i.e., natural + artificial dynamics?

• Yes, when the input graph is temporal, and the modification is necessary

Part I - Introduction Part II – Natural Dynamics
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How natural dynamics contribute GNNs?

• Considering natural dynamics can help graph machine learning models to capture the 
temporal correlations among features [1]

[1] Kazemi et al.: Representation Learning for Dynamic Graphs: A Survey. JMLR (2020)

• Running? 
• Dancing? 
• Or just the static model for photography?
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How natural dynamics contribute GNNs?

• Considering natural dynamics can help graph machine learning models to capture the 
temporal correlations among features [1]

[1] Kazemi et al.: Representation Learning for Dynamic Graphs: A Survey. JMLR (2020)

• Running? 
• Dancing? 
• Or just the static model for photography?
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How natural dynamics contribute GNNs?

• Considering natural dynamics can help graph machine learning models to capture the 
temporal correlations among features [1]

• Motion Recognition [2]

• Time-Series Forecasting [3]

• Pandemic Classification [4]

• Social Network Analysis [5]

• Many more …
[1] Kazemi et al.: Representation Learning for Dynamic Graphs: A Survey. JMLR (2020)

[2] Yan et al.: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018

[3] Li et al.: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

[4] Tsiotas et al.: The Effect of Anti-COVID-19 Policies on the Evolution of the Disease: A Complex Network Analysis of the Successful Case of Greece. Physics (2020)

[5] Aggarwal et al.: Evolutionary Network Analysis: A Survey. ACM Comput. Surv. (2014)
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How artificial dynamics contribute GNNs?

• Considering artificial dynamics can boost graph machine learning performance [1]

[1] Dongqi Fu and Jingrui He: Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future. Frontiers in Big Data 2022

Father
Mother

Sister

You!

Social Network Anonymization

Father
Mother

Sister

You or your teacher?

mask
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How artificial dynamics contribute GNNs?

• Considering artificial dynamics can boost graph machine learning performance [1]

• Privacy-Preserving [2]

• Permute the GNN gradients under the differential privacy constraint 

• Decision Accuracy [3]

• Add dependency constraints on weight matrices of GNN layers

• Domain Adaption [4]

• Graph promoting for large-scale pre-trained graph models on downstream tasks [4]

• Many more …

13
[1] Dongqi Fu and Jingrui He: Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future. Frontiers in Big Data 2022

[2] Yang et al: Secure Deep Graph Generation with Link Differential Privacy. IJCAI 2021

[3] Zheng et al.: Deeper-GXX: Deepening Arbitrary GNNs. CoRR 2022

[4] Sun et al.:GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks. KDD 2022
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Scope of this tutorial

• Natural dynamics in GNNs

• We focus on time-evolving graph structures and node features

• Artificial dynamics in GNNs

• We focus the augmentation strategies on graph structures and node features

𝐺(𝑡) 𝐺(𝑡+1) 𝐺(𝑡+2)

time time

𝑓𝜃1

𝐺𝑖𝑛𝑖𝑡

𝑓𝜃2

𝑓𝜃1(𝐺
𝑖𝑛𝑖𝑡) 𝑓𝜃2(𝑓𝜃1(𝐺

𝑖𝑛𝑖𝑡))

Naturally Evolving Features

Artificially Evolving Features
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Today

• Covered works for natural dynamics in GNNs

• Temporal GNNs with Convolutional Operations

• Temporal GNNs with Recurrent Units 

• Temporal GNNs with Time Attention 

• Temporal GNNs with Time Kernel

• Temporal GNNs with Temporal Point Process

Part I - Introduction Part II – Natural Dynamics
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Roadmap for natural dynamics

• Covered works for natural dynamics in GNNs

• Temporal GNNs with Convolutional Operations

• Temporal GNNs with Recurrent Units 

• Temporal GNNs with Time Attention 

• Temporal GNNs with Time Kernel

• Temporal GNNs with Temporal Point Process
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[1] Sijie Yan, Yuanjun Xiong, Dahua Lin: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018

Spatial Temporal Graph Convolutional Networks (ST-GCN) [1]

• Task: graph-level representation learning

• Natural dynamic: evolving structures and node features w.r.t time

• Goal: graph classification

Part I - Introduction Part II – Natural Dynamics
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Spatial Temporal Graph Convolutional Networks (ST-GCN) [1]

• Problem Setting

• Skeleton-based Action Reconstruction 

• or temporal graph classification in the graph research community

A Skeleton Sequence 
(or a Spatial-Temporal Graph) 

Going though the Spatial Graph Convolutional Network 
to obtain its high-level feature map

[1] Sijie Yan, Yuanjun Xiong, Dahua Lin: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018

Part I - Introduction Part II – Natural Dynamics
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Spatial Temporal Graph Convolutional Networks (ST-GCN) [1]

• Graph Modeling
• 𝐺 = (𝑉,𝐸) on a skeleton sequence with 𝑁 joints and 𝑇 timestamps featuring 

both intra-body and inter-frame connections

• 𝑉 = {𝑣𝑡𝑖| 𝑡 = 1, …, 𝑇, 𝑖 = 1, … , 𝑁}

• 𝐹(𝑣𝑡𝑖): node feature, containing coordinate vector, 
estimation confidence, etc.

• 𝐸𝑆 = {𝑣𝑡𝑖𝑣𝑡𝑗}: human body joints

• 𝐸𝐹 = {𝑣𝑡𝑖𝑣(𝑡+1)𝑖}: a particular joint 𝑖’s trajectory over time

[1] Sijie Yan, Yuanjun Xiong, Dahua Lin: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018

the 𝑖-th joint at time 𝑡

same 𝑡

Part I - Introduction Part II – Natural Dynamics



21

Spatial Temporal Graph Convolutional Networks (ST-GCN) [1]

• Let’s start from one single frame at 𝑡

• Spatial Graph Convolutional Neural Network

• which can be realized by GCN layer [2]

[1] Sijie Yan, Yuanjun Xiong, Dahua Lin: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018

[2] Thomas N. Kipf, Max Welling: Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017

the input feature of 𝑣𝑡𝑗

neighbors of 𝑣𝑡𝑖

normalizing term: how many number of nodes that 
are equivalent to 𝑣𝑡𝑗, towards 𝑣𝑡𝑖

Part I - Introduction Part II – Natural Dynamics
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Spatial Temporal Graph Convolutional Networks (ST-GCN) [1]

• Then, let’s consider multiple timestamps

• Recall the Spatial Graph Convolutional Neural Network

• For Spatial Temporal Graph Convolution

• Spatial Temporal Modeling

[1] Sijie Yan, Yuanjun Xiong, Dahua Lin: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018

[2] Thomas N. Kipf, Max Welling: Semi-Supervised Classification with Graph Convolutional Networks. ICLR 2017

a hyperparameter controlling the time range

Part I - Introduction Part II – Natural Dynamics
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Spatial Temporal Graph Convolutional Networks (ST-GCN) [1]

• A single frame shares the time, i.e.,

• Is that possible that they have different timestamps?

• In [2], each dynamic protein-protein interaction network has 36 continuous 
observations (i.e., 36 edge timestamps)

• every 12 observations compose a metabolic cycle (i.e., 3 snapshot timestamps), 
and each cycle reflects 25 mins in the real world. 

[1] Sijie Yan, Yuanjun Xiong, Dahua Lin: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018

[2] Dongqi Fu, Jingrui He: DPPIN: A Biological Repository of Dynamic Protein-Protein Interaction Network Data. IEEE Big Data 2022

𝐸𝑆 = {𝑣𝑡𝑖𝑣𝑡𝑗}: human body joints

intra-snapshot edges spatial graph convolution for a snapshot

Part I - Introduction Part II – Natural Dynamics
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Given multiple timestamps (e.g., edge timestamps and 
snapshot timestamps) in a temporal graph

• RQ1: How to integrate the multiple evolution patterns?

• RQ2: How to encode them for an embedding for temporal graph 
classification? What evolutions are dominating the graph similarity?

• RQ3: Labeling graph (especially temporal) is costly, how could we leverage 
fewer labels but effectively? 

[1] Sijie Yan, Yuanjun Xiong, Dahua Lin: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018

[2] Dongqi Fu, Jingrui He: DPPIN: A Biological Repository of Dynamic Protein-Protein Interaction Network Data. IEEE Big Data 2022

Part I - Introduction Part II – Natural Dynamics
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Facing above research questions, in Temp-GFSM [1]

• Multi-Time Evolution

• Multi-Time Attention

• Temporal Graph Few-Shot Metric Learning

[1] Dongqi Fu, Liri Fang, Ross Maciejewski, Vetle I. Torvik, Jingrui He: Meta-Learned Metrics over Multi-Evolution Temporal Graphs. KDD 2022

Part I - Introduction Part II – Natural Dynamics
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In Temp-GFSM [1]

• Multi-Time Evolution (Carrying Multiple Dynamics)

• Multi-Time Attention (Weighting Multiple Dynamics)

• Temporal Graph Few-Shot Metric Learning (New Class Adaption)

[1] Dongqi Fu, Liri Fang, Ross Maciejewski, Vetle I. Torvik, Jingrui He: Meta-Learned Metrics over Multi-Evolution Temporal Graphs. KDD 2022

Part I - Introduction Part II – Natural Dynamics
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In Multi-Time Evolution of Temp-GFSM [1]

• An edge is marked as quadruplet (𝑣𝑖, 𝑣𝑗, 𝑡𝑒, 𝑡𝑠), where

• (𝑣𝑖, 𝑣𝑗, 𝑡𝑒) means the connection between 𝑣𝑖 and 𝑣𝑗 exists at time 𝑡𝑒
• (𝑣𝑖, 𝑣𝑗, 𝑡𝑒, 𝑡𝑠) means the event (𝑣𝑖, 𝑣𝑗, 𝑡𝑒) happens in snapshot 𝑆𝑡𝑠

[1] Dongqi Fu, Liri Fang, Ross Maciejewski, Vetle I. Torvik, Jingrui He: Meta-Learned Metrics over Multi-Evolution Temporal Graphs. KDD 2022

Part I - Introduction Part II – Natural Dynamics
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In Multi-Time Attention of Temp-GFSM [1]

• Temporal graph 𝐺 -> representation vector 𝑍

• Node-Level Lifelong Attention (Select Meaningful Words)

• Intra-Snapshot Attention (Compose Supportive Sentences)

• Inter-Snapshot Attention (Finish a Fluent Article with Paragraphs)

[1] Dongqi Fu, Liri Fang, Ross Maciejewski, Vetle I. Torvik, Jingrui He: Meta-Learned Metrics over Multi-Evolution Temporal Graphs. KDD 2022

Part I - Introduction Part II – Natural Dynamics
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[1] Sijie Yan, Yuanjun Xiong, Dahua Lin: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018

Spatio-Temporal Graph Convolutional Networks (STGCN) [1] 

• Task: node-level representation learning

• Natural dynamic: evolving node features w.r.t time

• Goal: node feature prediction

Part I - Introduction Part II – Natural Dynamics
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Spatio-Temporal Graph Convolutional Networks (STGCN) [1] 

• A Deep Learning Framework for Traffic Forecasting 

• Problem Setting

• Traffic Flow Prediction

• 𝑣𝑡 ∈ ℝ𝑛: an observation of 𝑛 road segments

(𝑛 nodes in graph), e.g., volume or density

• 𝑤 ∈ ℝ𝑛×𝑛: adjacency matrix of road networks, the shared structure over t

[1] Bing Yu, Haoteng Yin, Zhanxing Zhu: Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. IJCAI 2018

given past volumes, 
predict future volumes, 
with the latent structure

Part I - Introduction Part II – Natural Dynamics
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Spatio-Temporal Graph Convolutional Networks (STGCN) [1] 

• Extract Spatial Features

• Similar to previous ST-GCN [2], backbone is GCN

• Extract Temporal Features

• Other than directly calling GCN on the catenation of temporal features, 𝑣𝑙 = 
{𝑣𝑡−𝑀+1, …, 𝑣𝑡}, involve a time convolution on the time series as below

[1] Bing Yu, Haoteng Yin, Zhanxing Zhu: Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. IJCAI 2018

[2] Sijie Yan, Yuanjun Xiong, Dahua Lin: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018

𝑣𝑡 ∈ ℝ𝑛: an observation of 𝑛 road segments
(𝑛 nodes in graph), e.g., volume or density
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Spatio-Temporal Graph Convolutional Networks (STGCN) [1] 

• Extract Spatial Features

• Similar to previous ST-GCN [2], backbone is GCN

• Extract Temporal Features

• Other than directly calling GCN on the catenation of temporal features, 𝑣𝑙 = 
{𝑣𝑡−𝑀+1, …, 𝑣𝑡}, involve a time convolution on the time series as below

𝑣𝑙: stacking 𝑣𝑡−𝑀+1, …, 𝑣𝑡

𝑙: is the index of unit block (or layer) 
of STGCN, i.e., 𝑣𝑙 → 𝑣𝑙+1

graph convolution, 
i.e., GCN

time convolution, 
(details next page)

pass a fully-connected output 
layer to readout 𝑣𝑡+1

[1] Bing Yu, Haoteng Yin, Zhanxing Zhu: Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. IJCAI 2018

[2] Sijie Yan, Yuanjun Xiong, Dahua Lin: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018

Part I - Introduction Part II – Natural Dynamics
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Spatio-Temporal Graph Convolutional Networks (STGCN) [1] 

• Extract Temporal Features

• Other than directly call GCN on the catenation 𝑣𝑙 = {𝑣𝑡−𝑀+1, …, 𝑣𝑡}

• A 1-D kernel along the time axis

• Could aggregate temporal neighbors to

capture temporal behaviors of 

features (e.g., traffic flows), 

especially for long-term time-series

[1] Bing Yu, Haoteng Yin, Zhanxing Zhu: Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. IJCAI 2018

[2] Sijie Yan, Yuanjun Xiong, Dahua Lin: Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. AAAI 2018

Part I - Introduction Part II – Natural Dynamics
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Today

• Covered works for natural dynamics in GNNs

• Temporal GNNs with Convolutional Operations

• Temporal GNNs with Recurrent Units 

• Temporal GNNs with Time Attention 

• Temporal GNNs with Time Kernel

• Temporal GNNs with Temporal Point Process
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[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

Diffusion Convolutional Recurrent Neural Network (DCRNN) [1] 

• Task: node-level representation learning

• Natural dynamic: evolving node features w.r.t time

• Goal: node feature prediction

Part I - Introduction Part II – Natural Dynamics
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Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

• Problem Definition

• Let’s still focus on Traffic Forecasting

• But the differences from the previous discussed STGCN are:

• What if the latent graph structure is directed?

• How can be deal with time information other than time convolution, e.g., 
how to take time information recurrently?

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

Part I - Introduction Part II – Natural Dynamics
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Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

• For directed graph structure

• (1) Stationary distribution of the diffusion process

• (2) Diffusion Convolution

• (3) Diffusion Convolution Layer

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

let’s step into each one of those

Part I - Introduction Part II – Natural Dynamics
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Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

• For directed graph structure

• (1) Stationary distribution of the diffusion process can be represented as a 
weighted combination of infinite random walks on the graph

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018
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Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

• For directed graph structure

• (1) Stationary distribution of the diffusion process can be represented as a 
weighted combination of infinite random walks on the graph

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

𝐷𝑂: out-degree diagonal matrix

𝑊: weighted adjacency matrix

𝑘: random walk steps

𝓟 ∈ ℝ𝑁×𝑁: whose 𝑖-th row represents the likelihood of diffusion 
(i.e., personalized PageRank vector) from node 𝑖

Part I - Introduction Part II – Natural Dynamics
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Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

• For directed graph structure

• (2) Diffusion Convolution over a graph signal 𝑿 ∈ ℝ𝑁×𝑃 and a filter 𝑓𝜃 is defined as

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

Part I - Introduction Part II – Natural Dynamics
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Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

• For directed graph structure

• (2) Diffusion Convolution over a graph signal 𝑿 ∈ ℝ𝑁×𝑃 and a filter 𝑓𝜃 is defined as

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

feature matrix, 𝑁 is the num of node, 
𝑃 is the node feature dimension

learnable parameter, 
i.e., weight matrices

Part I - Introduction Part II – Natural Dynamics
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Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

• For directed graph structure

• (2) Diffusion Convolution over a graph signal 𝑿 ∈ ℝ𝑁×𝑃 and a filter 𝑓𝜃 is defined as

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

out-degree based 
diffusion

in-degree based 
diffusion

feature matrix
two sets of parameters 

from 𝑓𝜃

feature matrix, 𝑁 is the num of node, 
𝑃 is the node feature dimension

learnable parameter, 
i.e., weight matrices

Part I - Introduction Part II – Natural Dynamics
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Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

• For directed graph structure

• (3) Diffusion Convolution Layer that maps 𝑃-dimensional features to 𝑄-dimensional 
outputs

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

Part I - Introduction Part II – Natural Dynamics
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Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

• For directed graph structure

• (3) Diffusion Convolution Layer that maps 𝑃-dimensional features to 𝑄-dimensional 
outputs

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

𝑿 ∈ ℝ𝑁×𝑃: input

𝑯 ∈ ℝ𝑁×𝑄: output

activation function (e.g., ReLU, Sigmoid) indexing for 𝑘

indexing for in-degree or out-degree diffusion

Part I - Introduction Part II – Natural Dynamics
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Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

• After for directed graph structure,

• (1) Stationary distribution of the diffusion process

• (2) Diffusion Convolution

• (3) Diffusion Convolution Layer

• How to take time information recurrently?

• Temporal Dynamics Modeling [1]

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

Part I - Introduction Part II – Natural Dynamics
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Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

• Temporal Dynamics Modeling 

• Adopt the logic from Gated Recurrent Units (GRU)[2], i.e., make GRU take structured 
information

• Input

• Reset Gate

• Update Gate

• Output

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

[2] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, Yoshua Bengio: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR

(2014)

Part I - Introduction Part II – Natural Dynamics
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Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

• Temporal Dynamics Modeling 

• Adopt the logic from Gated Recurrent Units (GRU)[2], i.e., make GRU take structured 
information

• Input

• Reset Gate

• Update Gate

• Output

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

[2] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, Yoshua Bengio: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR

(2014)

diffusion convolution w. different weight parameters

Part I - Introduction Part II – Natural Dynamics
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Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

• Experiments

• Datasets

• METR-LA: Highway of Los Angeles

• 207 sensors (traffic speed)

• May 1st 2012 to Jun 30th 2012

• PEMS-BAY: Highway in Bay Area of California

• 325 sensors (traffic speed)

• Jan 1st 2017 to May 31th 2017

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018
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Diffusion Convolutional Recurrent Neural Network (DCRNN) [1]

• Experiments

• Performance (traffic speed forecasting)

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018
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The latent graph structure may be not easy to observe

• In DCRNN[1], the adjacency is hand-crafted

• Could we find another way to extract that latent structure?

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018
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Could we find another way to extract that latent structure?

• Discrete Graph Structure Learning for Forecasting Multiple Time Series (GTS) [2]

• Focusing on the same problem (i.e., traffic forecasting) and the same diffusion 
convolution structure as DCRNN [1]

• But set the adjacency matrix as a variable to learn

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

[2] Chao Shang, Jie Chen, Jinbo Bi: Discrete Graph Structure Learning for Forecasting Multiple Time Series. ICLR 2021

samples from a given 
Gumbel distribution

temperature

𝑋𝑖: the 𝑖-th node over all features and timestamps
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In the same datasets with [1], i.e., METR-LA and PEMS-BAY

• Experiments

• Performance (traffic speed forecasting)

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

[2] Chao Shang, Jie Chen, Jinbo Bi: Discrete Graph Structure Learning for Forecasting Multiple Time Series. ICLR 2021
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In DCRNN [1] or GTS [2],

• The adjacency is fixed with evolving node features

• What if the adjacency is also evolving?

• For evolving structures and features

• EvolveGCN [3] is proposed to adapt model parameters, i.e., 

• Each time has its own GCN model with its 𝐴(𝑡) and 𝐻(𝑡)

• Cross timestamps, the model parameters are dependent, e.g., 𝑊𝑡
(𝑙)

= 𝐿𝑆𝑇𝑀(𝑊𝑡−1
(𝑙)
)

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

[2] Chao Shang, Jie Chen, Jinbo Bi: Discrete Graph Structure Learning for Forecasting Multiple Time Series. ICLR 2021

[3] Pareja et al.: EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. AAAI 2020
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In DCRNN [1] or GTS [2],

• The adjacency is fixed with evolving node features

• What if the adjacency is also evolving?

• Can we also predict the future adjacency?

• For evolving structures and features

• VGRNN [3] is proposed to learn the variational posterior distribution of evolving adjacency 
structures together, in the RNN structure

[1] Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. ICLR 2018

[2] Chao Shang, Jie Chen, Jinbo Bi: Discrete Graph Structure Learning for Forecasting Multiple Time Series. ICLR 2021

[3] Hajiramezanali et al.: Variational Graph Recurrent Neural Networks. NeurIPS 2019
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In this tutorial

• Covered works for natural dynamics in GNNs

• Temporal GNNs with Convolutional Operations

• Temporal GNNs with Recurrent Units 

• Temporal GNNs with Time Attention 

• Temporal GNNs with Time Kernel

• Temporal GNNs with Temporal Point Process
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[1] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention 

Networks. WSDM 2020

DySAT: Deep Neural Representation Learning on Dynamic 
Graphs via Self-Attention [1]

• Task: node-level representation learning

• Natural dynamic: evolving graph structures and node features w.r.t time

• Goal: link prediction
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DySAT: Deep Neural Representation Learning on Dynamic Graphs 
via Self-Attention [1]

• Problem Definition (Link Prediction)

• Given a series of graph snapshots {𝒢1, …, 𝒢𝑇}, and 𝒢𝑡 = (𝑨𝑡, 𝑿𝑡), DySAT [1] aims to 
learn the node representation 𝑒𝑣

𝑡 for each node 𝑣 at timestamps 𝑡 = {1, 2, …, 𝑇}

• Then, the latest time 𝑒𝑣
𝑇 and 𝑒𝑢

𝑇 are used to decide if there is an edge links node 𝑣 and 
node 𝑢 at time 𝑇+1

[1] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks. 

WSDM 2020
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DySAT: Deep Neural Representation Learning on Dynamic Graphs 
via Self-Attention [1]

• Structural Self-Attention

• Apply attention in one single timestamp

• Topological neighbors

• Temporal Self-Attention

• Apply attention across timestamps

• Temporal neighbors

[1] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks. 

WSDM 2020
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DySAT: Deep Neural Representation Learning on Dynamic Graphs 
via Self-Attention [1]

• Structural Self-Attention

• At a single timestamp t, the superscript of 𝑡 is omitted in the following equation

[1] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks. 

WSDM 2020

𝒛𝑣: hidden representation of node 𝑣
after structural attention

𝒂: learnable weight matrix (e.g., MLP) 𝑾𝑠: projection weight matrix for structural attention

𝐴𝑢𝑣: adjacency neighbors in 𝑨𝑡

𝑎𝑢𝑣: attention weight
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DySAT: Deep Neural Representation Learning on Dynamic Graphs 
via Self-Attention [1]

• Temporal Self-Attention

• Who are temporal neighbors for a certain node?

• Temporal neighbors for node 𝑣 consist of its historical behaviors

[1] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks. 

WSDM 2020
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DySAT: Deep Neural Representation Learning on Dynamic Graphs 
via Self-Attention [1]

• Temporal Self-Attention

• Temporal neighbors for node 𝑣 consist of its historical behaviors

[1] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks. 

WSDM 2020

𝑋𝑣: concatenation of 𝑥𝑣
1, 𝑥𝑣

2, …, 𝑥𝑣
𝑇

𝐹′: normalization factor

A matrix enforcing auto-regressive 
manner, details next page

ℝ𝑇×𝐷′ ℝ𝐷′×𝐹′

ℝ𝑇×𝑇Node 𝑣’s time 

embedding, ℝ𝑇×𝐹′

attention weights, 𝑖 and 𝑗 are two 
timestamps
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DySAT: Deep Neural Representation Learning on Dynamic Graphs 
via Self-Attention [1]

• Temporal Self-Attention

• Temporal neighbors for node 𝑣 are its historical behaviors

[1] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks. 

WSDM 2020

when 𝑀𝑖𝑗 = −∞, 𝛽𝑣
𝑖𝑗

= 0, which switches off the 

attention from timestamp 𝑖 to 𝑗
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DySAT: Deep Neural Representation Learning on Dynamic Graphs 
via Self-Attention [1]

• Structural + Temporal Self-Attention

• Obtain structural encoding independently at each timestamp 𝑡

• Then, temporal self-attention take the structural encoding as input to attend over 
timestamps

[1] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks. 

WSDM 2020
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DySAT: Deep Neural Representation Learning on Dynamic Graphs 
via Self-Attention [1]

• Structural + Temporal Self-Attention

• Obtain structural encoding independently at each timestamp 𝑡

• Then, temporal self-attention take the structural encoding as input to attend over 
timestamps

[1] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks. 

WSDM 2020
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DySAT: Deep Neural Representation Learning on Dynamic Graphs 
via Self-Attention [1]

• Structural + Temporal Self-Attention

• Obtain structural encoding independently at each timestamp 𝑡

• Then, temporal self-attention take the structural encoding as input to attend over 
timestamps + positional encoding

[1] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks. 

WSDM 2020
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DySAT: Deep Neural Representation Learning on Dynamic Graphs 
via Self-Attention [1]

• Structural + Temporal Self-Attention

• Add the absolute temporal position of each snapshot

[1] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks. 

WSDM 2020
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DySAT: Deep Neural Representation Learning on Dynamic Graphs 
via Self-Attention [1]

• Positional Encoding

[1] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks. 

WSDM 2020

image source: https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/
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In this tutorial

• Covered works for natural dynamics in GNNs

• Temporal GNNs with Convolutional Operations

• Temporal GNNs with Recurrent Units 

• Temporal GNNs with Time Attention 

• Temporal GNNs with Time Kernel

• Temporal GNNs with Temporal Point Process
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Back to the positional encoding

• Do we have other options?

• A concurrent method [1] with DySAT [2] proposes the time kernel function to record 
the time features

[1] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, Kannan Achan: Inductive representation learning on temporal graphs. ICLR 2020

[2] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang: DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks. 

WSDM 2020
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[1] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, Kannan Achan: Inductive representation learning on temporal graphs. ICLR 2020

Inductive Representation Learning on Temporal Graphs (TGAT) [1]

• Task: node-level representation learning

• Natural dynamic: evolving graph structures and node features w.r.t time

• Goal: link prediction, node classification

Part I - Introduction Part II – Natural Dynamics



71

Inductive Representation Learning on Temporal Graphs (TGAT) [1]

• In [1], kernel function is proposed to map time 𝑡 to a finite dimensional 
representation vector

[1] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, Kannan Achan: Inductive representation learning on temporal graphs. ICLR 2020

𝜔1, 𝜔2, …, 𝜔𝑑 are learnable parameters
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Inductive Representation Learning on Temporal Graphs (TGAT) [1]

• Suppose there is a target node 𝑣0 at time 𝑡, which needs to attend over its 
spatial-temporal neighbors

• For each node 𝑣𝑖, 𝑣0 connects with it previously at a time 𝑡𝑖, i.e., 𝑡𝑖 < 𝑡

[1] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, Kannan Achan: Inductive representation learning on temporal graphs. ICLR 2020
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Inductive Representation Learning on Temporal Graphs (TGAT) [1]

• With                                                ,  𝑡𝑖 < 𝑡

• First, append the position encoding by time kernel functions, to form 𝒁(𝑡)

[1] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, Kannan Achan: Inductive representation learning on temporal graphs. ICLR 2020

node embedding of 𝑣0 at 
the (𝑙-1)-th layer of TGAT,
the first layer is the initial 
input feature

time kernel function
𝒁(𝑡) is the intermediate 
step of getting the node 

embedding ෨ℎ0
(𝑙)

of 𝑣0 at 
the 𝑙-th layer of TGAT
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[1] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, Kannan Achan: Inductive representation learning on temporal graphs. ICLR 2020

Inductive Representation Learning on Temporal Graphs (TGAT) [1]

• With                                                ,  𝑡𝑖 < 𝑡

• Append the position encoding by time kernel functions

• Self-Attention

• Readout
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Other Time Kernel Functions [1]

[1] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, Kannan Achan: Self-attention with Functional Time Representation Learning. NeurIPS 2019
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Today

• Covered works for natural dynamics in GNNs

• Temporal GNNs with Convolutional Operations

• Temporal GNNs with Recurrent Units 

• Temporal GNNs with Time Attention 

• Temporal GNNs with Time Kernel

• Temporal GNNs with Temporal Point Process
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[1] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha: DyRep: Learning Representations over Dynamic Graphs. ICLR 2019

DyRep: Learning Representations over Dynamic Graphs [1]

• Task: node-level representation learning

• Natural dynamic: evolving graph structures and node features w.r.t time

• Goal: link prediction
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DyRep: Learning Representations over Dynamic Graphs [1]

• Temporal Point Process (TPP) [2]

• A user is tweeting, they tweeted at time 𝑡1= 8:00 am, 𝑡2=10:00 am, 𝑡3= 11:00 am, 
what is 𝑡4 = ?

• TPP is a model that could fit the process of 𝑡1, 𝑡2, and 𝑡3 to predict 𝑡4

[1] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha: DyRep: Learning Representations over Dynamic Graphs. ICLR 2019

[2] Upadhyay et al., Temporal Point Processes: https://courses.mpi-sws.org/hcml-ws18/lectures/TPP.pdf
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DyRep: Learning Representations over Dynamic Graphs [1]

• Temporal Point Process (TPP) [2]

• Given the history of events ℋ(𝑡) = {𝑡1, …, 𝑡𝑖−1}, we need to model,

• A conditional probability density function 𝑓∗ = 𝑓 𝑡 ℋ(𝑡)), which is the conditional 
probability that the next event 𝑡 will occur during the interval [𝑡, 𝑡+𝑑𝑡)

• A cumulative distribution function 𝐹∗(𝑡) = 𝐹 𝑡 ℋ(𝑡)) 𝑡𝑖−1 =
𝑡

𝑓∗ 𝜏 𝑑𝜏, which is the 

conditional probability that the next event will occur before 𝑡

• A complementary of 𝐹∗(𝑡), 𝑆∗ 𝑡 = 𝑆 𝑡 ℋ(𝑡)) = 1 - 𝐹∗(𝑡), the conditional 
probability that the next event will not occur before time 𝑡

[1] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha: DyRep: Learning Representations over Dynamic Graphs. ICLR 2019

[2] Upadhyay et al., Temporal Point Processes: https://courses.mpi-sws.org/hcml-ws18/lectures/TPP.pdf
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DyRep: Learning Representations over Dynamic Graphs [1]

• Temporal Point Process (TPP) [2]

• Given the history ℋ(𝑡) = {𝑡1, …, 𝑡𝑖−1}, we need to model,

• 𝑓∗(𝑡) = 𝑓 𝑡 ℋ(𝑡)): next event 𝑡 will occur during the interval [𝑡, 𝑡+𝑑𝑡)

• 𝐹∗(𝑡) = 𝐹 𝑡 ℋ(𝑡)) 𝑡𝑖−1 =
𝑡

𝑓∗ 𝜏 𝑑𝜏: next event will occur before 𝑡

• 𝑆∗ 𝑡 = 𝑆 𝑡 ℋ(𝑡)) = 1 - 𝐹∗(𝑡): next event will not occur before time 𝑡

[1] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha: DyRep: Learning Representations over Dynamic Graphs. ICLR 2019

[2] Upadhyay et al., Temporal Point Processes: https://courses.mpi-sws.org/hcml-ws18/lectures/TPP.pdf
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DyRep: Learning Representations over Dynamic Graphs [1]

• Temporal Point Process (TPP) [2]

• The conditional intensity function 𝜆∗ 𝑡 = 𝜆(𝑡|ℋ(𝑡)), i.e., the conditional probability 
that the next event will happened during [𝑡, 𝑡+𝑑𝑡), is defined as follows

• 𝜆∗ 𝑡 can be also understood as the instantaneous rate of events per time of unit, 
e.g., 𝜆∗ 𝑡 = 10 tweets/minute

• Using the form of 𝜆∗ 𝑡 also contributes to TPP model parameterization and model 
reusability [2]

[1] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha: DyRep: Learning Representations over Dynamic Graphs. ICLR 2019

[2] Upadhyay et al., Temporal Point Processes: https://courses.mpi-sws.org/hcml-ws18/lectures/TPP.pdf

𝜆∗ 𝑡 𝑑𝑡 =
𝑓∗ 𝑡 𝑑𝑡

𝑆∗(𝑡)
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DyRep: Learning Representations over Dynamic Graphs [1]

• Temporal Point Process (TPP) [2]

• Different forms of functions model the intensity function 𝜆∗ 𝑡 , e.g.,

• Homogeneous Poisson process

• 𝜆∗ 𝑡 = 𝜇 ≥ 0

• Inhomogeneous Poisson process

• 𝜆∗ 𝑡 = 𝑔𝜃(𝑡) ≥ 0

• Hawkes process

• 𝜆∗ 𝑡 = 𝜇 + 𝛼 σ𝑡𝑖∈ℋ(𝑡) 𝜅𝜔(𝑡 − 𝑡𝑖),  𝜅𝜔 𝑡 = exp(−𝜔𝑡)

• The parameters are obtained by fitting the model with the observation and maximizing 
the log-likelihood 

[1] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha: DyRep: Learning Representations over Dynamic Graphs. ICLR 2019

[2] Upadhyay et al., Temporal Point Processes: https://courses.mpi-sws.org/hcml-ws18/lectures/TPP.pdf

10 tweets/minute

2 tweets/@8:35am, 25 tweets/@2:58pm, …
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DyRep: Learning Representations over Dynamic Graphs [1]

• Model Temporal Point Process (TPP) for Graphs

• Each edge connection is considering as an event (𝑢, 𝑣, 𝑡)

• We want to predict whether a node 𝑢 and a node 𝑣 will connect at time 𝑡, 
given node 𝑢’s history and node 𝑣’s history before 𝑡

[1] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha: DyRep: Learning Representations over Dynamic Graphs. ICLR 2019
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DyRep: Learning Representations over Dynamic Graphs [1]

• Model Temporal Point Process (TPP) for Graphs

• Intensity functions for graphs, i.e., an edge connection between nodes 𝑢 and 𝑣

[1] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha: DyRep: Learning Representations over Dynamic Graphs. ICLR 2019

𝜆𝑢,𝑣 𝑡 = 𝑓(𝑔𝑢,𝑣( ҧ𝑡))
ҧ𝑡 means the timestamp just before the 

current event
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DyRep: Learning Representations over Dynamic Graphs [1]

• Model Temporal Point Process (TPP) for Graphs

• Intensity functions for graphs, i.e., an edge connection between nodes 𝑢 and 𝑣

• Now, the question is how to get the node embeddings, e.g., 𝑧𝑣 ҧ𝑡 ?

[1] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha: DyRep: Learning Representations over Dynamic Graphs. ICLR 2019

𝜆𝑢,𝑣 𝑡 = 𝑓(𝑔𝑢,𝑣( ҧ𝑡))

𝑔𝑢,𝑣( ҧ𝑡) = 𝝎 [𝑧𝑢 ҧ𝑡 ; 𝑧𝑣( ҧ𝑡)]𝑓 𝑥 = 𝜓log(1 + exp(𝑥/𝜓))

the inner function 𝑔() computes 
the compatibility of the catenation

the outer function 𝑓() is a softplus function
with trainable a parameter to
make sure positive output
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DyRep: Learning Representations over Dynamic Graphs [1]

• Model Temporal Point Process (TPP) for Graphs

• How to get node embeddings, e.g., 𝑧𝑣 ҧ𝑡 ?

• Self-Propagation: w.r.t its historical behavior

• Exogeneous Drive: for the smooth update of the current

• Localized Embedding Propagation: message passing within second-order proximity

• Suppose node 𝑢 and node 𝑣 participating in any type of event at time 𝑡

• E.g., for the 𝑝-th event of node 𝑣 at time 𝑡

[1] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha: DyRep: Learning Representations over Dynamic Graphs. ICLR 2019
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DyRep: Learning Representations over Dynamic Graphs [1]

• Suppose node 𝑢 and node 𝑣 participating in any type of event at time 𝑡

• For the 𝑝-th event of node 𝑣 at time 𝑡

[1] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan Zha: DyRep: Learning Representations over Dynamic Graphs. ICLR 2019

ℎ𝑠𝑡𝑟𝑢𝑐
𝑢 is the aggregation on node 𝑢’s neighbors

ℎ𝑠𝑡𝑟𝑢𝑐
𝑢 ҧ𝑡 = max({𝜎 𝑞𝑢𝑖 ҧ𝑡 ∙ ℎ𝑖 ҧ𝑡 , ∀𝑖 ∈ 𝑁𝑢( ҧ𝑡)})

ℎ𝑖 ҧ𝑡 = 𝐖𝑧𝑖 ҧ𝑡 + 𝒃𝑞𝑢𝑖 ҧ𝑡 can be understood as the 

weight of the connection
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Today

• Covered works for natural dynamics in GNNs

• Temporal GNNs with Convolutional Operations

• Temporal GNNs with Recurrent Units 

• Temporal GNNs with Time Attention 

• Temporal GNNs with Time Kernel

• Temporal GNNs with Temporal Point Process
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There are also many great research works on natural dynamics

• Ma et al. Streaming Graph Neural Networks. SIGIR 2020

• Rossi et al. Temporal Graph Networks for Deep Learning on Dynamic Graphs. CoRR (2020)

• Tian et al. Self-supervised Representation Learning on Dynamic Graphs. CIKM 2021

• Fu et al. SDG: A Simplified and Dynamic Graph Neural Network. SIGIR 2021

• You et al. ROLAND: Graph Learning Framework for Dynamic Graphs. KDD 2022

• Cong et al. Do We Really Need Complicated Model Architectures For Temporal Networks? ICLR 2023

• Many more……
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Dongqi Fu
Ph.D. Candidate
Department of Computer Science
University of Illinois, Urbana-Champaign
dongqif2@illinois.edu
https://dongqifu.github.io/
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