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ABSTRACT

Graph Neural Networks (GNNs) have achieved state-of-the-art per-
formance in many high-impact applications such as fraud detection,
information retrieval, and recommender systems due to their pow-
erful representation learning capabilities. Some nascent efforts have
been concentrated on simplifying the structures of GNN models,
in order to reduce the computational complexity. However, the
dynamic nature of these applications requires GNN structures to
be evolving over time, which has been largely overlooked so far. To
bridge this gap, in this paper, we propose a simplified and dynamic
graph neural network model, called SDG. It is efficient, effective,
and provides interpretable predictions. In particular, in SDG, we
replace the traditional message-passing mechanism of GNNs with
the designed dynamic propagation scheme based on the personal-
ized PageRank tracking process. We conduct extensive experiments
and ablation studies to demonstrate the effectiveness and efficiency
of our proposed SDG. We also design a case study on fake news
detection to show the interpretability of SDG.
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1 INTRODUCTION

Graphs are ubiquitous data structures nowadays for representing
rich information regarding node interactions and connections. Com-
bined with the powerful representation learning capabilities of deep
neural network models, Graph Neural Networks (GNNs) [8, 11, 22]
have achieved state-of-the-art performance in many high-impact
applications, such as fraud detection [14], information retrieval [16],
and recommender systems [23, 26].
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Following the success of GNNs, many nascent efforts concen-
trate on scaling GNNs during the information propagation process
among nodes, which aims to reduce the computational complex-
ity of the training stage (i.e., to reduce the training time or the
number of parameters) but maintain the performance in the mean
time [2, 3, 10, 12, 24]. For example, in [3], the authors integrate
the importance sampling scheme into the message-passing mecha-
nism to sample subgraphs in each layer for scaling the structures
of GNNs. Inspired by [25], the authors in [12] directly replace the
message-passing mechanism with the random walk stationary dis-
tribution among nodes to avoid stacking layers in GNNs. However,
when applying GNNs to the real-world complex settings, in ad-
dition to scaling their structures, another critical aspect has been
largely overlooked, i.e., evolving the structures of GNNs. Compared
with static neural network models with fixed structures and pa-
rameters, dynamic models have the potential of simultaneously
enjoying compatibility and interpretability due to the adaptation of
their structures or parameters to different inputs [9]. Therefore, we
make the first attempt to simplify and dynamize the structures of
GNN:ss for the scalability and interpretability, which is different from
the graph representation learning models learning the evolution
pattern [15] or persistent pattern [5] of dynamic graphs.

To this end, we propose a simplified and dynamic graph neural
network model in this paper, called SDG. In the proposed SDG, we
design the dynamic propagation scheme based on the personalized
PageRank tracking process without the explicit message-passing
to transfer multi-hop neighbourhood information. The key idea
behind this modification is that the influence of other nodes on a
selected node in the graph through a k-layer GNN model is pro-
portional to the k-step random walk distribution starting from that
selected seed node [12, 25]. The advantage of the dynamic propa-
gation scheme is that when the structure of input graph changes,
the stationary distribution of random walks could be tracked in a
fast and accurate manner instead of resolving from scratch. Hence,
we can leverage this property to (1) not only achieve efficient fine-
tuning for node-level and graph-level classification on changed
graphs, (2) but also investigate the influence of a certain node on
the node-level and graph-level label prediction results by masking
that node in the proposed dynamic propagation scheme. Then we
design extensive experiments and ablation studies to demonstrate
the effectiveness and efficiency of our proposed SDG model in node
classification tasks on changed graphs, compared with baseline al-
gorithms. We also design a case study of fake news detection based
on the pre-trained word embeddings and constructed news article
word graphs, in order to investigate the influence of a certain word
on the detection result of a news article.

2 PRELIMINARIES

In this section, we first introduce the notation used in this paper,
and explain the basic theory behind our proposed model.
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We use bold capital letters to denote matrices (e.g., A) and bold
lower-case letters to denote column vectors (e.g., a). We follow
the convention of Matlab for matrix indexing (e.g., A(i, :) denotes
the i-th row of A). Given an undirected and unweighted graph
G = (V,E) with nodes V and edges E, A € R™" denotes the
adjacency matrix with self-loops, D € R™" denotes the degree
matrix with self-loops, X € R™d denotes the node feature matrix,
and Y € R™¢ denotes the node label matrix, where n is the number
of nodes, d is the dimension of node features, and ¢ is the dimension
of node labels. Moreover, when the input graph G changes with

inserted and deleted edges AE, we use G’ to denote the new graph.

For the dimension consistency of matrices during the proposed
dynamic propagation scheme, we consider the number of nodes to
be fixed, i.e., an inserted (or deleted) node is regarded as a previous
(or existing) dangling node [21].

In [25], authors have shown that the influence of a node V; on
anode V; through a k-layer GNN model [8, 11] is proportional to
the k-step random walk distribution on node V; starting from the
seed node V;. Also, when k — oo, the random walk distribution
converges to the stationary distribution. That paves the way for
improving the scalability of GNNs by replacing the traditional
message-passing mechanism with the stationary distribution (i.e.,
personalized PageRank) to propagate information among nodes [2,
12], where the training time and the number of parameters are
reduced for avoiding stacking layers in neural networks.

3 PROPOSED MODEL

In this section, we first introduce the overall framework of our
proposed SDG graph neural network model, and then we illustrate
each component of SDG in a systematic way.
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Figure 1: Structure of SDG Graph Neural Network.

3.1 Overview of SDG

The proposed SDG graph neural network model has an input layer
and an output layer as shown in Figure 1. To dynamically use the
stationary distribution to propagate the neighborhood information
among nodes instead of stacking layers, we propose the dynamic
propagation scheme in our SDG graph neural network, which is
expressed as follows.

Z = softmax(PH) (1)

where P € R™" is the dynamic propagation matrix, H € R™*¢
is the hidden node feature matrix extracted from the input node
features X € R through the model-agnostic neural network fj,
ie, H = fp(X), and Z € R™*€ denotes the predicted label matrix.

Next we introduce how to form the dynamic propagation matrix
P for the changed graph structure in Subsection 3.2, and how to

design the model-agnostic neural network fy to extract the hidden
node feature matrix H from the input node feature matrix X in
Subsection 3.3.

Finally, the loss function of SDG is defined as follows.
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where Y € R™€ and Z € R™ are the ground truth and model

output respectively.

3.2 Dynamic Propagation Scheme

The proposed dynamic propagation scheme is realized by track-
ing the dynamic propagation matrix P, where each row P(i,:) is
occupied by the stationary distribution of random walks starting
from that node V;. To be specific, P(i, :) can be fast tracked instead
of solving from scratch when the graph topology changes from
Ato A’. And the computation of each row is independent, which
implies that the tracking process from P to P’ can be parallelized.
We first introduce the tracking process of P/, and then analyze its
time complexity and error bound.

As each row P(i, :) encodes the stationary distribution of random
walks starting from node V;, it can be expressed as follows.

P(i,))T =aMP(,)T + (1 - a)r (3)

where M = AD™! € R™" denotes the column-stochastic transition
matrix, « € [0, 1] denotes the teleportation probability, and r € R"
denotes the personalized vector with r(i) = 1 and other entries
equal to 0. For the clear notation, we omit the transpose notation
T for P(i,:) in the following part.

When the graph topology changes from M to M’ with the up-
dated edge AE, the stationary distribution needs to be updated. To
obtain P’, we need update each row of P. The core idea is to push
out the previous probability distribution score from the changed
part to the residual part of the graph [6, 27], and then add the
pushed out distribution back to the previous distribution in order
to finally obtain the new distribution. The tracking process can be
described as follows.

P(i, :)pushout = OC(M/ - M)P(i,:) (4)

and

P(i,:)" = P(i,) + Z(aM’)k P(i,) pushout (5)
k=0
where P(i, ) pushour denotes the distribution score that needs to be
pushed out on the residual graph due to the updated edges AE, and
P(i,:)’ denotes the tracked new distribution.

This push out process can be proved to converge to the exact
stationary distribution of the new graph through sufficient cumu-
lative power iterations [27, 28], i.e., k — oo. With this push out
process, we can update each row of dynamic propagation matrix P
to further track P’. Next we analyze the time complexity and ac-
curacy of approximately tracking the whole dynamic propagation
matrix P’ with a threshold € as follows.

THEOREM 1. Given the updated matrix M’, the threshold €, and
q distributed machines, each machine at most costs O(% log, (5))
time to obtain the tracked dynamic propagation matrix P’ with each
row bounded by 1< error compared with the stationary distribution



in terms of £ -norm, where m is the number of non-zero entries of M’,
and n is the number of nodes in the graph.

Proor. With the threshold e, if || (aM’)* P(i, ) pyshoutll1 < €
then we stop the iteration of Eq. 5. Since M’ is a column-stochastic
matrix, then ||M’||; = 1. Thus, the number of iterations k satis-
ﬁes k < loga(m); and P(i, :)pushout = a(M’ —M)P(i, :
), then |IP(i,) pushoutl1 < 2a. The computation of each row is
independent, such that each distributed machine at most costs
O(gm log,, (5)) complexity. Also, denoting the early stop at the
s-th iteration, then the remaining tracking error is denoted as
| ZZ":S(O(M')]c P(i,:) pushour |1, which can be proved less than 1=
just by replacing P(i, ) pushour With a(M’ — M)P(i, :) and setting
k =loga(5)- m]

Thus, tracking the whole dynamic propagation matrix P’ costs
O( % log,, (5)) time complexity with the error bound {25 to avoid

solving it from scratch by matrix inversion with O(n?) [12].

3.3 Model-Agnostic Neural Networks

The intuition of applying the model-agnostic neural network fp
is to extract the qualified hidden node features H from the input
node features X. fy can take a variety of forms, such as CNNs [7].
Without loss of generality, we use a linear multilayer perceptron
as fp, to avoid increasing too much training complexity. Note that
fp operates on each input node independently, which implies that
extracting hidden node features could also be paralleled as follows.

H(i,;) = fo(X(3,2)) (6)

where X (i, :) denotes the input node features of node V;, and H(i, :)
denotes the hidden node feature of node V; extracted by fp.

Since the dynamic propagation P can be pre-computed inde-
pendently ahead of the training process of fy, we separate the
information propagation from the node feature extraction. It makes
the scalability and interpretability of SDG neural network possible,
when the input graph structure or the input node feature changes.

Scalability of SDG. When the structure of the input graph
changes (i.e., from A to A’) and/or the input node features change
(i.e., from X to X’), the dynamic propagation matrix P’ can be
fast obtained in parallel as mentioned above. In this case, fp only
needs to be fine-tuned to produce H’, starting from the previously
well-trained parameters.

Interpretability of SDG. To investigate the influence of a cer-
tain node V; on the final prediction, SDG enables two types of
methods, i.e., from the node feature view or from the graph struc-
ture view. First, we remove the hidden node features H(i,:) = 0 and
keep all remaining parts to see the change of the prediction results
on other nodes. Second, we mask (i.e., delete) certain edges related
to V; on the graph, fast track the new stationary distribution, and
keep all remaining parts to see the change of the final predictions.

3.4 Optimization

We summarize the training process of SDG in Algorithm 1. In
Steps 1-4, the initial inputs could be obtained from existing static
algorithms like [2, 12]. Then in Steps 5-9, SDG incrementally tracks
the dynamic propagation matrix and fine-tunes the model-agnostic

Algorithm 1 Stochastic Training Procedure for SDG
Input:
Graph G with adjacency matrix A € , node feature matrix
X € R™ label matrix Y € R"%, and any possible updates
A’ € R™" and X’ € R,
Output:
Predictions Z € R™ ¢ and updated predictions Z’ € R"*¢
1: Compute the initial dynamic propagation matrix P.
2: while not converge do
3. Train fp through Eq. 1 and Eq. 2 to obtain qualified H and Z.
4 end while
5. if graph structure and/or node features change then
6
7
8
9

Rnxn

Update P into P’ through Eq. 4 and Eq. 5.
: end if
: while not converge do
Fine-tune fy on any new matrices A” and/or X’ .
10: end while

neural network parameters if any change happens on the graph
structure level and/or the node feature level.

4 EXPERIMENTS

In this section, we first introduce the data sets used for effectiveness
comparison and efficiency analysis with state-of-the-art baseline
algorithms in node classification tasks!. Then, to show the inter-
pretability of our SDG model, we design the fake news detection
case study by using the proposed SDG graph neural network model
to classify news article word graphs, and to evaluate the influence
of each word on the prediction result.

Table 1: Dataset Statistics

l Dataset ‘ Classes ‘ Nodes ‘ Edges ‘ Label Rate

Citeseer 6 2,110 3,668 0.036
Cora-ML 7 2,810 7,981 0.047
PubMed 3 19,717 | 44,324 0.003

4.1 Data Sets

We use three real-world citation graphs (i.e., Citeseer [20], Cora-
ML [1, 17], and PubMed [19]) to design experiments for the text
classification problem. In the citation graph, each node represents
a paper, and each edge represents the citation relationship between
two papers. We leverage the largest connected component of each
graph during the experiment, and each node feature is extracted by
a bag-of-words representation of that paper’s abstract. The statistics
of the three data sets are shown in Table 1.

4.2 Baseline Algorithms

PPNP and APPNP are two simplified graph neural network mod-
els [12] with state-of-the-art effective and efficient performance
in many graph mining tasks [2, 12]. Also, we include a variate of
our SDG called SDG-S for the ablation study, which removes the
dynamic propagation scheme, i.e., k always equals to 0 in Eq. 5.
With this variate, we can investigate the capability of the proposed
dynamic propagation scheme in terms of improving effectiveness
and efficiency.

!https://github.com/DongqiFu/SDG
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Table 2: Effectiveness and Efficiency Comparison

Citeseer Cora-ML PubMed
Methods - - - - - -
Accuracy (%) [ Time Consumption (s) | Accuracy (%) [ Time Consumption (s) | Accuracy (%) [ Time Consumption (s)

PPNP 74.07+0.53 10.89+0.91 84.40+0.18 19.81£1.65 84.03+0.32 109.75+7.68
APPNP 73.93+0.30 22.80+1.69 84.63+0.34 49.70+6.18 83.73+0.21 39.91+4.29
SDG-S 74.10+0.30 6.65+0.69 84.60+0.28 8.51+3.26 84.10+0.28 12.74+5.05
SDG 74.17+0.39 7.11+0.93 84.87+0.68 5.89+3.22 84.70+0.59 16.06+6.45

4.3 Effectiveness and Efficiency Comparison n " " . * *
Due to the difference between static and dynamic graph neural 3\; 21 % ) ®

network models, we mask 1% — 3% edges of the whole graph to form 871 e @ @

the graph G and add back those edges to form the graph G’. After g 70 e =009
setting @ = 0.9 and making all algorithms converge at the same 6] @ @ @ a=038
error threshold, we report the average node classification accuracy 1 10 20 30 40 50

and time consumption on graph G’ of all baselines. Note that PPNP
and APPNP are trained solely on graph G’, SDG and SDG-S are
trained on graph G and fine-tuned on graph G’. In Table 2, it can
be observed that SDG and SDG-S could fast provide competitive
performance for node classifications. To be specific, in PubMed,
SDG achieves 84.70% accuracy that is 0.79% higher than the third
best (PPNP). An intuitive explanation is that the tracked stationary
distribution of SDG is more suitable for the parameters of the model-
agnostic neural network to classify nodes. Moreover, SDG-S also
provides the acceptable accuracy in a fast manner for avoiding the
tracking process only with the outdated stationary distribution.
A possible explanation is that the topology update between two
graphs G and G’ is relatively small as compared to the whole graph,
and the model-agnostic neural network bridges the insufficient
tracking with its adequate representative abilities. To verify this
explanation, we design the following parameter sensitivity analysis.

4.4 Parameter Sensitivity

To verify the above mentioned explanation, we change the value
of two important parameters, i.e., the teleportation probability «
and the number of tracking iterations k, and to see how the perfor-
mance changes accordingly. In Figure 2, as the number of tracking
iterations increases, the classification accuracy increases but only to
a small extent. This observation suggests that the model-agnostic
neural network bridges the gap between approximated tracked
stationary distribution and the real stationary distribution, which
means the classification accuracy is not very sensitive to k when the
graph structure does not change too much. Therefore, the proposed
SDG model can be readily applied to interpret the prediction result,
i.e., when only a small portion of the input graph is masked, a small
k can also provide comparable performance.

4.5 Case Study

Disinformation dissemination has a huge negative impact on our
society, and many factors may hinder the identification of disinfor-
mation. For example, messages on the social network are usually
short and fast propagated, which requires that the predictive model
should have efficient training process and adaptable structures for
the evolving environment. Hence, we design the fake news case
study with the proposed SDG model and a fake news data set [13].

Number of Tracking lterations (k)

Figure 2: Parameter Sensitivity of SDG on Citeseer Dataset.

Our objective is news article word graph classification. To build
a word graph (i.e., Figure 3), a word stands for a node, an edge is
established if two words co-occur in a window of g text units [18].
Then, each node has a word embedding vector from the pre-trained
Bert model [4], and the word graph feature aggregates all node em-
beddings through an average pooling layer. Also, each word graph
associates with a label indicating fake news or not. In Figure 3, when
we mask nodes "drinking water" and "eliminates COVID-19 virus"
respectively, that fake news is detected with probability 99.29% and
62.95%, which suggests that "eliminates COVID-19 virus" is a key
indicator to detect that fake news article.

drinking
O water
alot of
Drinking a lot of water i cOVID-19
and gargling with warm gargling
salt water eliminates the an J
COVID-19virus. @,
ENVE S
FRKE NEWS .& Giminates 0
with )

salt

Figure 3: A Fake News Article and its Word Graph.
5 CONCLUSION

In this paper, we propose a simplified and dynamic graph neu-
ral network model, named SDG, which replaces the traditional
message-passing mechanism with the designed dynamic propaga-
tion scheme. We design extensive experiments on real-world graphs
to demonstrate the effectiveness, scalability, and interpretability of
SDG, in comparison with state-of-the-art techniques.
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