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ABSTRACT

In the big data era, the relationship between entities becomes more
complex. Therefore, graph (or network) data attracts increasing
research attention for carrying complex relational information. For
a myriad of graph mining/learning tasks, graph neural networks
(GNNs) have been proven as effective tools for extracting infor-
mative node and graph representations, which empowers a broad
range of applications such as recommendation, fraud detection, mol-
ecule design, and many more. However, real-world scenarios bring
pragmatic challenges to GNNss. First, the input graphs are evolv-
ing, i.e., the graph structure and node features are time-dependent.
Integrating temporal information into the GNNs to enhance their
representation power requires additional ingenious designs. Sec-
ond, the input graphs may be unreliable, noisy, and suboptimal
for a variety of downstream graph mining/learning tasks. How
could end-users deliberately modify the given graphs (e.g., graph
topology and node features) to boost GNNs’ utility (e.g., accuracy
and robustness)? Inspired by the above two kinds of dynamics, in
this tutorial, we focus on topics of natural dynamics and artificial
dynamics in GNNs and introduce the related works systematically.
After that, we point out some promising but under-explored re-
search problems in the combination of these two dynamics. We
hope this tutorial could be beneficial to researchers and practition-
ers in areas including data mining, machine learning, and general
artificial intelligence.
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Figure 1: Natural and Artificial Dynamics w.r.t Node Feature
Changes.

ACM Reference Format:

Donggi Fu, Zhe Xu, Hanghang Tong, and Jingrui He. 2023. Natural and
Artificial Dynamics in GNNs: A Tutorial. In Proceedings of the Sixteenth
ACM International Conference on Web Search and Data Mining (WSDM °23),
February 27-March 3, 2023, Singapore, Singapore. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3539597.3572726

1 INTRODUCTION

Graph neural networks (GNNs), as one kind of deep learning model,
attract much research attention for effectively leveraging entity
relational information and providing informative representation
vectors for numerous application domains [20]. In the complex real
world, the adaption of GNN, at least, faces two general challenges.
First, given an input graph, its topological structure and node (or
graph) features can be dependent on time, i.e., they are evolving
with time. A typical example is the World Wide Web. The resulting
problems to GNNs include but are not limited to ignoring entity
temporal correlation, overlooking causality discovery, computation
inefficiency, non-generalization, etc. Second, given an input graph,
its initial topological structure and node (or graph) features may be
imperfect (e.g., having construction errors, sampling noises, missing
features, etc.). The corresponding problems for GNNs include but
are not limited to non-robustness, indiscriminative representation
vectors, non-generalization, etc.

Studying natural and artificial dynamics in graphs is the re-
search to solve the challenges brought by temporally evolving and
imperfect input graphs [6]. To be specific, natural dynamics and
artificial dynamics in graphs are two general terms. Natural dy-
namics in graphs can illustrate that the input graphs themselves
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are evolving, i.e., the topology structures, the node-level, edge-
level, and (sub)graph-level features, and labels are dependent on
time [1, 11]. As for artificial dynamics in graphs, we can use this term
to describe that end-users change the existing or construct the non-
existing graph-related elements (e.g., graph topology, node/graph
attributes/labels, GNN layer connections, GNN gradients, etc.) to
achieve certain performance boosting in graph mining [7] and
graph representation learning tasks [5, 26]. In Figure 1, the differ-
ence between natural and artificial dynamics is shown by setting
the feature changes as an example. In Figure 1(a), the node features
are evolving along with time, where a GNN-based graph represen-
tation learning model should consider the different node features
at different timestamps when producing the node representation
vectors [4]. In Figure 1(b), when the input graphs are imperfect
to the downstream tasks like node classification, a learning-based
model 6 can be introduced to augment the node feature to improve
the GNN-based classifier accuracy [22].

In this tutorial, we narrow the scope of natural and artificial
dynamics in GNNs by (1) using "natural dynamics in GNNs" to
focus on temporal graph neural networks (TGNNs) and introduce
how related works leverage time information during the message-
passing process of GNNs; (2) and using "artificial dynamics in
GNNs" to target how related works modify (i.e., corrupt or aug-
ment) the input graph structure and features [2] to enhance GNNs
performance. To introduce natural and artificial dynamics in GNNs,
we will cover some classic and nascent related works, and this tuto-
rial is organized into four parts. In Part I, we begin with introducing
the preliminaries of GNN, in terms of background knowledge, mo-
tivations, and problem settings. In Part II, we first discuss the key
challenges brought by evolving input graphs to GNNs, and then we
introduce different works in effectively dealing with time informa-
tion during the representation learning process of GNNs. In Part
111, the key challenges brought by imperfect input graphs to GNNs
are mentioned first, and then we introduce the different strategies
from end-users to change the input graphs and boost the GNNs
performance. In Part IV, considering the imperfect and evolving
graphs, we discuss future research opportunities and provide some
insights to the research community.

2 TUTORIAL DETAILS

The tutorials will be 3 hours, and the outline is as follows.

2.1 Outline of Tutorial

e Part I: Introduction
— Background and Motivations
— Problem Definitions and Settings

e Part II: Natural Dynamics in GNNs
— Key Challenges from Involving Input Graphs
— Incorporating GNNs with Convolutional Operations
— Incorporating GNNs with Recurrent Units
— Incorporating GNNs with Time Attention
- Incorporating GNNs with Time Point Process
— Incorporating GNNs with Time Kernel

o Part III: Artificial Dynamics in GNNs
- Key Challenges from Imperfect Input Graphs
— Heuristic-based Artificial Dynamics
— Data-driven Artificial Dynamics
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e Part IV: Open Questions and Challenges
— Key Challenges from Imperfect Evolving Graphs
— Data-driven Artificial Dynamics on Temporal graphs
— Transferable Artificial Dynamics on Temporal Graphs
— Interpretable Artificial Dynamics on Temporal Graphs
The details for Parts IT — IV are introduced as follows.

2.2 Part II: Natural Dynamics in GNNs

For dealing with graphs having evolving natures, temporal graph
neural networks (TGNNSs) are proposed. The general principle to
TGNNs s is that the input graphs have evolving components, e.g.,
the graph structure and/or node attributes, etc. Since the TGNN's
take the graphs as input and the graph topological information
is also called spatial information in some applications (e.g., traffic
modeling and sensor modeling), TGNNs are also called spatial-
temporal graph neural networks (STGNNs) in some works [20].
Here, we use the term temporal graph neural networks (TGNNs).

To appropriately consider the time information during the GNNs’
information aggregation process, many TGNN works utilize dif-
ferent temporal models. For example, (1) in [23, 25], authors apply
the convolutional operations from convolutional neural networks
(CNNSs) on graphs to capture temporal features. (2) In [9, 13, 15], au-
thors insert the recurrent units (from various RNNs such as LSTM
and GRU) into GNNs to preserve the temporal dependency during
the GNNs’ representation learning process. (3) In [17], authors pro-
pose to use the self-attention mechanism on time features to learn
the temporal correlations along with node representations. Also,
(4) authors in [18] utilize Time Point Process to model time, and
(5) authors in [21] use Time Kernel to model time, respectively, in
order to obtain time domain features.

2.3 Part III: Artificial Dynamics in GNNs

In this part, we will introduce two lines of artificial dynamics in
GNNs. Overall, we categorize artificial dynamics into heuristic-
based and data-driven dynamics. For the heuristic-based artificial
dynamics, we introduce 4 common applications on graph machine
learning, and their representative works include: (1) improving
GNNs’ message passing by inserting a super node into the given
graphs [8], (2) improving the generalization ability of GNNs by ran-
domly dropping edges [16] during the message passing , (3) adding
features from the network topology [12] to break the GNNs’ expres-
siveness limitation, and (4) randomly perturbing the given graphs to
generate corrupted views for graph contrastive learning [24].

For the data-driven artificial dynamics, our introduction is still
around 3 typical applications which include: (1) optimizing the
given topology and node features for graph denoising [22], (2) learn-
ing an adversarial graph view for better contrastive learning sam-
ples [3], and (3) condensing a given graph into a small and informative
graph [10] to speed up the training of GNNs.

2.4 PartIV: Open Questions and Challenges

In this part, we will introduce several under-explored questions
with a special focus on the interaction between natural and arti-
ficial dynamics, i.e., augmenting the temporal graphs. In general,
research about data augmentation on temporal graphs [14, 19] is
rare, and most, if not all, of them are based on heuristics. We will
point out some promising open questions, including (1) data-driven
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augmentation on temporal graphs and scalable solutions to han-
dle tremendous search space, (2) transferable and generalizable
augmentation techniques across multiple distinct temporal graphs,
and (3) interpretable augmentation on temporal graphs where new
methods are needed to understand the augmentations (e.g., the
uncertainty of shifting the timestamps).

3 COVERED WORKS IN THIS TUTORIAL

For space, we only list part of representative works here. This is

not an exhaustive list of papers that are relevant to the topic.

e Part II: Natural Dynamics in GNNs
— CNN-based Temporal Graph Neural Networks

* Bing Yu, Haoteng Yin, Zhanxing Zhu. Spatio-Temporal Graph
Convolutional Networks: A Deep Learning Framework for
Traffic Forecasting. IJJCAI 2018.

RNN-based Temporal Graph Neural Networks

* Yaguang Li, Rose Yu, Cyrus Shahabi, Yan Liu. Diffusion Con-
volutional Recurrent Neural Network: Data-Driven Traffic
Forecasting. ICLR 2018.

* Ehsan Hajiramezanali, Arman Hasanzadeh, Nick Duffield,
Krishna R. Narayanan, Mingyuan Zhou, Xiaoning Qian. Vari-
ational Graph Recurrent Neural Networks. NeurIPS 2019.

Attention-based Temporal Graph Neural Networks

* Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao
Yang. DySAT: Deep Neural Representation Learning on Dy-
namic Graphs via Self-Attention Networks. WSDM 2020.

— Time Point Process-based Temporal Graph Neural Networks

* Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, Hongyuan

Zha. DyRep: Learning Representations over Dynamic Graphs.
ICLR 2019.
— Time Kernel-based Temporal Graph Neural Networks
* Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar,
Kannan Achan. Inductive representation learning on tempo-
ral graphs. ICLR 2020.
Part III: Artificial Dynamics in GNNs
— Heuristic-based Artificial Dynamics
* Yu Rong, Wenbing Huang, Tingyang Xu, Junzhou Huang.
DropEdge: Towards Deep Graph Convolutional Networks
on Node Classification. ICML 2020.

* Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol
Vinyals, George E. Dahl. Neural Message Passing for Quan-
tum Chemistry. ICML 2017.

Pan Li, Yanbang Wang, Hongwei Wang, Jure Leskovec. Dis-
tance Encoding: Design Provably More Powerful Neural
Networks for Graph Representation Learning. NeurIPS 2020.

*

* Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang

Wang, Yang Shen. Graph Contrastive Learning with Aug-
mentations. NeurIPS 2020.
— Data-driven Artificial Dynamics

* Zhe Xu, Boxin Du, Hanghang Tong. Graph Sanitation with
Application to Node Classification. WWW 2022.

* Shengyu Feng, Baoyu Jing, Yada Zhu, Hanghang Tong. Ad-
versarial Graph Contrastive Learning with Information Reg-
ularization. WWW 2022.

* Weli Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang
Tang, Neil Shah. Graph Condensation for Graph Neural
Networks. ICLR 2022.
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e Part IV: Open Questions and Challenges
— Augmenting Temporal Graphs for TGNNs
« Yiwei Wang, Yujun Cai, Yuxuan Liang, Henghui Ding, Changhu
Wang, Siddharth Bhatia, Bryan Hooi. Adaptive Data Aug-
mentation on Temporal Graphs. NeurIPS 2021.

4 RELATED TUTORIALS

e Graph Representation Learning: Foundations, Methods,

Applications and Systems

— Presenters: Wei Jin, Yao Ma, Yiqi Wang, Xiaorui Liu, Jiliang
Tang, Yukuo Cen, Jiezhong Qiu, Jie Tang, Chuan Shi, Yanfang
Ye, Jiawei Zhang, and Philip S. Yu.

— Conference: KDD’ 2021, August 14-18, 2021, Singapore

— Connection: This tutorial introduces the graph neural net-
work (GNN) models systematically, which paves the way for
our tutorial for GNNs performance improvement through nat-
ural dynamics and artificial dynamics.

— Differences: This tutorial introduces the graph neural net-
works in the fundamental theories, applications, and systems
of GNNs. Our tutorial mainly focuses on the scenario where
the input graphs for GNNs are evolving and imperfect and
how the related works are proposed to address corresponding
challenges.

e Mining Temporal Networks

— Presenters: Polina Rozenshtein and Aristides Gionis.

— Conference: KDD’ 2019, August 4-8, 2019, USA

— Connection: This tutorial introduces how to mine the tempo-
ral graphs to obtain knowledge to serve application tasks. The
temporal graphs in this tutorial stand for the natural dynamics
of our tutorial. Moreover, the goal of graph neural networks
(GNNs) extracting meaningful node and graph hidden repre-
sentations is to serve various graph mining tasks.

— Differences: This tutorial focuses on graph mining tasks, es-
pecially when the input graphs are evolving (i.e., input graphs
have natural dynamics). In our tutorial, we target the mining
tools only at graph neural networks, and half of our tutorial
introduces how GNNs effectively deal with evolving input
graphs. We extend our tutorial with artificial dynamics to in-
troduce how GNNs deal with imperfect graphs by dropping
and augmenting.

e Data Efficient Learning on Graphs

— Presenters: Chuxu Zhang, Jundong Li, Meng Jiang.

— Conference: KDD’ 2021, August 14-18, 2021, Singapore

— Connection: This tutorial introduces self-supervised learning,
which is an important application of artificial dynamics in
GNNSs.

- Differences: This tutorial focuses on efficiently using the
limited labeled samples on graph data, where self-supervised
learning uses graph augmentation techniques to generate cor-
rupted samples. Our tutorial covers this application in the arti-
ficial dynamics part and introduces the graph augmentation
techniques systematically.

5 PRESENTER BIOGRAPHY

Dongqi Fu. He is currently a fourth-year Ph.D. student at the
Department of Computer Science, University of Illinois Urbana-
Champaign. His research interests focus on graph mining, graph
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representations, and graph neural networks, especially studying
natural dynamics and artificial dynamics in graphs. He has pub-
lished several research papers at top-tier conferences (e.g., KDD,
SIGIR, CIKM, etc.) and served as the program committee member
for many top-tier conferences (e.g., Top 8% reviewer in NeurIPS
2022) and as the reviewer for many journals (e.g., TKDD and TIST).
For more details, please refer to his personal website at https:
//dongqifu.github.io/.

Zhe Xu. He is a Ph.D. student at the Department of Computer
Science at the University of Illinois Urbana-Champaign. Prior to
that, he obtained his M.S. degree in Computer Science from the Uni-
versity of Illinois Urbana-Champaign in 2019 and his B.E. degree in
Electronic Engineering from Fudan University. His research inter-
ests lie in graph machine learning with a focus on graph data aug-
mentation. His research works have been published at several major
conferences in data mining and machine learning (e.g., TheWeb-
Conf, ICDM, CIKM, etc.). He also served as a reviewer in many top-
tier data mining and machine learning venues. For more informa-
tion, please check his personal website at https://pricexu.github.io/.

Hanghang Tong. He is currently an associate professor at De-
partment of Computer Science at University of Illinois at Urbana-
Champaign. Before that he was an associate professor at School
of Computing, Informatics, and Decision Systems Engineering
(CIDSE), Arizona State University. He received his M.Sc. and Ph.D.
degrees from Carnegie Mellon University in 2008 and 2009, both
in Machine Learning. His research interest is in large scale data
mining for graphs and multimedia. He has received several awards,
including SDM/IBM Early Career Data Mining Research award
(2018), NSF CAREER award (2017), ICDM 10-Year Highest Impact
Paper award (2015), four best paper awards (TUP 2014, CIKM 2012,
SDM 2008, ICDM 2006), seven ’bests of conference’, 1 best demo,
honorable mention (SIGMOD 2017), and 1 best demo candidate
second place (CIKM 2017). He has published over 200 refereed ar-
ticles. He is the Editor-in-Chief of SIGKDD Explorations (ACM),
and an associate editor of Knowledge and Information Systems
(Springer) and Computing Surveys (ACM); and has served as a
program committee member in multiple data mining, database and
artificial intelligence venues (e.g., SIGKDD, CIKM, SIGMOD, AAAI,
WWW, etc.). He has given several tutorials at top-tier conferences,
such as IEEE Big Data 2015, SDM 2016, WSDM 2018, KDD 2018,
CIKM 2020, etc. For more information, please refer to his personal
website at http://tonghanghang.org/.

Jingrui He. She is currently an Associate Professor at the School
of Information Sciences, University of Illinois at Urbana-Champaign.
She also has a courtesy appointment with the Computer Science De-
partment. She received her Ph.D. from Carnegie Mellon University
in 2010. Her research focuses on heterogeneous machine learn-
ing, rare category analysis, active learning and semi-supervised
learning, with applications in security, social network analysis,
healthcare, and manufacturing processes. She is the recipient of the
2016 NSF CAREER Award, the 2020 OAT Award, three times recipi-
ent of the IBM Faculty Award in 2018, 2015 and 2014 respectively,
and is selected as IJCAI 2017 Early Career Spotlight. She has more
than 130 publications at major conferences (e.g., JCAI, AAAI KDD,
ICML, NeurIPS) and journals (e.g., TKDE, TKDD, DMKD), and is the
author of two books. Her papers have received the Distinguished
Paper Award at FAccT 2022, as well as Bests of the Conference at
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ICDM 2016, ICDM 2010, and SDM 2010. For more details, please
refer to her personal website at https://www.hejingrui.org/.
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