
TYPE Review

PUBLISHED 02 December 2022

DOI 10.3389/fdata.2022.1062637

OPEN ACCESS

EDITED BY

Shuhan Yuan,

Utah State University, United States

REVIEWED BY

Xiao Han,

Utah State University, United States

Sihong Xie,

Lehigh University, United States

Boxiang Dong,

Montclair State University,

United States

*CORRESPONDENCE

Dongqi Fu

dongqif2@illinois.edu

Jingrui He

jingrui@illinois.edu

SPECIALTY SECTION

This article was submitted to

Data Mining and Management,

a section of the journal

Frontiers in Big Data

RECEIVED 06 October 2022

ACCEPTED 14 November 2022

PUBLISHED 02 December 2022

CITATION

Fu D and He J (2022) Natural and

Artificial Dynamics in Graphs:

Concept, Progress, and Future.

Front. Big Data 5:1062637.

doi: 10.3389/fdata.2022.1062637

COPYRIGHT

© 2022 Fu and He. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Natural and Artificial Dynamics
in Graphs: Concept, Progress,
and Future

Dongqi Fu1* and Jingrui He2*

1Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL,

United States, 2School of Information Sciences, University of Illinois at Urbana-Champaign,

Champaign, IL, United States

Graph structures have attracted much research attention for carrying

complex relational information. Based on graphs, many algorithms and

tools are proposed and developed for dealing with real-world tasks such

as recommendation, fraud detection, molecule design, etc. In this paper,

we first discuss three topics of graph research, i.e., graph mining, graph

representations, and graph neural networks (GNNs). Then, we introduce the

definitions of natural dynamics and artificial dynamics in graphs, and the

related works of natural and artificial dynamics about how they boost the

aforementioned graph research topics, where we also discuss the current

limitation and future opportunities.

KEYWORDS

graph mining, graph representations, graph neural networks, natural dynamics,

artificial dynamics

1. Introduction

In the era of big data, the relationship between entities becomes much more complex

than ever before. As a kind of relational data structure, graph (or network) attract much

research attention for dealing with this unprecedented phenomenon. To be specific,

many graph-based algorithms and tools are proposed, such as DeepWalk (Perozzi et al.,

2014), LINE (Tang et al., 2015), node2vec (Grover and Leskovec, 2016), GCN (Kipf

and Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2018),

etc. Correspondingly, many challenges of real-world applications get addressed to some

extent, such as recommendation (Fan et al., 2019), fraud detection (Wang et al., 2019),

and molecule design (Liu et al., 2018), to name a few.

To investigate graph-based research and relevant problems and applications

systematically, at least1 three aspects will be discussed, i.e., graph mining, graph

representations, and graph neural networks (GNNs). Their dependency is convoluted,

the reason why we aim to disentangle it is that we can discuss the current efforts from

natural and artificial dynamics studies (which are improving the graph algorithms and

tools performance) in a fine-grained view, such that we can envision detailed future

research opportunities. As for natural dynamics in graphs, we use this term to illustrate

that the input graphs themselves are evolving, i.e., the topology structures, the node-level,

1 Research topics like graph theory and graph database management are also very important, but

we skip discussing them in this paper.

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2022.1062637
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2022.1062637&domain=pdf&date_stamp=2022-12-02
mailto:dongqif2@illinois.edu
mailto:jingrui@illinois.edu
https://doi.org/10.3389/fdata.2022.1062637
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2022.1062637/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

edge-level, and (sub)graph-level features and labels are

dependent on time (Aggarwal and Subbian, 2014; Kazemi

et al., 2020). As for artificial dynamics in graphs, we use

this term to describe that end-users change (e.g., filter, mask,

drop, or augment) the existing or construct (i.e., from scratch)

the non-existing graph-related elements (e.g., graph topology,

graph stream, node/graph attributes/labels, GNN gradients,

GNN layer connections, etc.) to realize the certain performance

upgrade [e.g., computation efficiency (Fu et al., 2020e), model

explanation (Fu and He, 2021b), decision accuracy (Zheng et al.,

2022), etc.]. To the best of our knowledge, the first relevant act

of conceiving artificial dynamics in graphs appeared in Kamvar

et al. (2003), where “artificial jump” is proposed to adjust the

graph topology for PageRank realizing the personal ranking

function on structured data (Kamvar et al., 2003), i.e., a random

surfer would follow an originally non-existing but newly-added

highway to jump to a personally-selected node with a predefined

teleportation probability.

With the above introduction of graph research terminology

and dynamics category, in this paper, we are ready to introduce

some related works on investigating natural and artificial

dynamics in graph mining, graph representations, and graph

neural networks, and then discuss future research opportunities.

To be specific, this survey is organized as follows. The

definition and relation introduction for graph mining tasks,

graph representations, and graph neural networks are discussed

in Section 2. Then, in Section 3, we discuss the formal definition

followed by concrete research works for natural dynamics,

artificial dynamics, and natural + artificial dynamics in graphs.

Finally, in Section 4, we conclude the paper with sharing some

research future directions.

2. Relations among graph mining,
graph representations, and graph
neural networks

To pave the way for investigating the natural and artificial

dynamics in graphs, we first introduce graph research topics

(i.e., graph mining, graph representations, and graph neural

networks) and their relationships in this section. Then, in the

next section, we can target each topic and see how natural

dynamics and artificial dynamics contribute to them.

In general, the relationships between graph mining, graph

representations, and graph neural networks can be illustrated as

shown in Figure 1. (1) Graph mining aims to extract interesting

(e.g., non-trivial, implicit, previously unknown, and potentially

useful) knowledge from graph data, and graph mining consists

of numerous specific tasks, such like node classification (Kipf

and Welling, 2017) is aiming to classify the node category

based on its features, and node clustering (Shi and Malik,

2000; Andersen et al., 2006) is aiming to partition the entire

graph into disjoint or overlapped clusters (i.e., subgraphs) based

on end-users’ objectives (e.g., conductance, betweeness, etc.).

For example, clustering can discover knowledge to help GNN

implementations, and Cluster-GCN (Chiang et al., 2019) is

proposed to sample nodes in a topology-preserved clustering,

which could entitle vanilla GCN (Kipf and Welling, 2017)

the fast computation to deal with large-scale graph datasets.

(2) Graph representations are the bases of graph mining,

which projects graphs into a proper space such that graph

mining can do various task-specific computations. To the

best of our knowledge, graph representations consists of three

components. First, graph embedding represents graphs with

affinity matrices like Laplacian matrix and hidden feature

representation matrix, on which many mining tasks rely,

such as node classification (Kipf and Welling, 2017); Second,

graph law represents graphs with several parameters which

describe the statistical property of graphs such as node degree

distribution and edge connection probability, which could help

mining tasks like graph generation (Leskovec and Faloutsos,

2007) and link prediction (Wang et al., 2021b); Third, graph

visualization provides the visual representations and can serve

for the domain-specific knowledge interpretation (Bach et al.,

2015; Yang Y. et al., 2020). Within graph representations, graph

embedding, graph law, and graph visualization can contribute

to each other, and detailed overlapping works are discussed

in the following sections. (3) Graph neural network (GNN) is

an effective tool for extracting meaningful graph embedding

vectors (or matrices) by combining deep learning theory and

graph theory (Wu et al., 2021). Graph neural networks are

composed of a family of many specific models with different

research concerns like neural architecture (Chen M. et al., 2020)

and message passing aggregation design (Klicpera et al., 2019),

the detailed related works are also discussed in the following

sections.

2.1. Graph mining

Graph mining interacts with real-world problems by

discovering knowledge for many applications. Based on

structured data, graph mining consists of numerous specific

tasks. For example,

• Node (and graph) classification (Kipf and Welling,

2017; Zhang et al., 2018; Jing et al., 2021): Nodes

sharing similar features should be classified into the

same category.

• Node clustering (or graph partitioning) (Shi and Malik,

2000; Ng et al., 2001; Andersen et al., 2006; Spielman and

Teng, 2013): Individual nodes are clustered for optimizing

certain metrics such as inter-cluster distance, intra-cluster

density, etc.

• Link prediction (Dunlavy et al., 2011; Zhang and

Chen, 2018; Kumar et al., 2019): The probability

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

FIGURE 1

Relationships among graph mining, graph representations, and graph neural networks.

is estimated that whether two nodes should be

connected based on evidence like node structural and

attribute similarity.

• Graph generation (Leskovec and Faloutsos, 2007;

Bojchevski et al., 2018; You et al., 2018; Zhou et al., 2019,

2020): Model the distribution of a batch of observed graphs

and then generate new graphs.

• Subgraph matching (Tong et al., 2007; Zhang et al., 2009;

Du et al., 2017; Liu et al., 2021): Check whether a query

graph (usually the smaller one) can be matched in a data

graph (usually the larger one) approximately or exactly.

• Graph anomaly detection (Akoglu et al., 2015; Yu et al.,

2018; Zheng et al., 2019): Identify whether the graph has

abnormal entities like nodes, edges, subgraphs, etc.

• Graph alignment (Zhang and Tong, 2016; Yan et al.,

2021a,b; Zhou et al., 2021): Retrieve similar structures (e.g.,

nodes, edges, and subgraphs) across graphs.

• many more . . .

Those tasks can be directly adapted to solve many high-

impact problems in real-world settings. For example,

through learning the graph distribution and adding

specific domain knowledge constraints, graph generators

could contribute to molecule generation and drug

discovery (Liu M. et al., 2022; Luo and Ji, 2022); With

modeling picture pixels as nodes, graph partitioning

algorithms could achieve effective image segmentation at

scale (Bianchi et al., 2020); By modeling the information

dissemination graph over news articles, readers, and

publishers (Nguyen et al., 2020) or modeling the suspicious

articles into word graphs (Fu et al., 2022a), node and

graph classification tasks can help detect fake news in the

real world.

2.2. Graph representations

For accomplishing various graph mining tasks, graph

representations are indispensable for providing the bases for

task-specific computations. To the best of our knowledge, graph

representations can be roughly categorized into three aspects,

(1) graph embedding (i.e., vector representation), (2) graph law

(i.e., parametric representation), and (3) graph visualization (i.e.,

visual representation).

2.2.1. Graph embedding (vector representation)

First, graph representations can be in the form of

embedding matrices, i.e., the graph topological information

and attributes are encoded into a matrix (or matrices). The

most common form can be the Laplacian matrix, which is

the combination of the graph adjacency matrix and degree

matrix. Recently, the graph embedding (or graph representation

learning) area attracts many research interests, along with

numerous graph embedding methods proposed for extracting

the node (or graph) hidden representation vectors from the

input affinity matrices, like DeepWalk (Perozzi et al., 2014),

LINE (Tang et al., 2015), and node2vec (Grover and Leskovec,

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

2016). They2 share the general principle to extract node

representation vectors, which means a node could reflect (e.g.,

predict, be proximate to, etc.) its sampled neighbors in the

embedding space, e.g., Skip-gram in Perozzi et al. (2014)

and Grover and Leskovec (2016) and order-based proximity

in Tang et al. (2015). With the different angles of viewing graph

topology and node features, some derivatives are proposed,

such as metapath2vec (Dong et al., 2017) for heterogeneous

networks, graph2vec (Narayanan et al., 2017) for the graph-

level embeddings, and tdGraphEmbd (Beladev et al., 2020) for

temporal graph-level embeddings.

All graph embedding works mentioned above are

unsupervised, which means the guidance (or constraints,

regularizers) during the learning process are totally from the

input graph structure and features, such that the encoded

vectors within specific dimensions are actually reflecting the

graph itself information. Hence, by involving extra domain

knowledge (i.e., labels and task-specific loss functions), graph

embedding vectors can serve real-world applications. For

example, with user-item interaction history records and user

anomaly labels, graph embedding techniques can be leveraged

for predicting the user-interested merchandise and user’s

behavior in the future (Kumar et al., 2019); By involving

additional labels, graph embedding vectors can be used to

generate small molecule graphs through an encoder-decoder

framework (Jin et al., 2018; Simonovsky and Komodakis, 2018);

Also, with delicately designed query questions and temporal

knowledge graphs, graph embedding techniques can be used to

help answer open-world questions (Saxena et al., 2021; Shang

et al., 2022).

2.2.2. Graph law (parametric representation)

Second, graphs can also be represented by several

parameters. A simple but common example is Erdős-Rényi

random graph, i.e., G(n, p) or G(n,m) (Drobyshevskiy and

Turdakov, 2020). To be specific, in G(n, p), the possibility of

establishing a single edge among n nodes is independent of

each other and valued by a constant parameter p; while in

G(n,m), an n-node and m-edge graph is chosen evenly from all

possible n-node andm-edge graph collections. In addition to the

number of nodes, the number of edges, and the edge probability,

many common parameters are well-studied for representing

2 As another kind of powerful tool for graph embedding, graph neural

networks (GNNs) become popular and attract research attention from

both the deep learning domain and graph theory domain. Here, “they”

are not referring to graph neural networks. And we set up another

section for introducing GNNs, otherwise Section 2.2 will be enormous

and oversta�ng. GNNs will be discussed separately in Section 2.3. We

would like to note that GNN is a tool for realizing graph embedding as we

illustrated in Figure ??, the context separation in the paper is not standing

for the tied hierarchy of graph representations and graph neural networks.

or modeling graphs, such as degree distribution, effective

diameter, clustering coefficient, and many more (Chakrabarti

and Faloutsos, 2006; Drobyshevskiy and Turdakov, 2020).

Representing graphs by graph laws can be summarized into

the following steps: (1) determine the parameter (or formula

of several parameters) to represent the graphs, (2) fit the

value of parameters based on the graph structures and features

through statistical procedures. For example, Leskovec et al.

(2005) discover the densification law over evolving graphs in

the macroscopic view, which is expressed as e(t) ∝ n(t)α , and

e(t) denotes the number of edges at time t, n(t) denotes the

number of nodes at time t, and α ∈ [1, 2] is an exponent

parameter representing the density degree. And they use the

empirical observation of real-world graphs to fit the value of α.

Targeting the microscopic view, Leskovec et al. (2008) discover

other graph laws. Different from the macroscopic view, they

view temporal graphs in a three-fold process, i.e., node arrival

(determining how many nodes will be added), edge initiation

(howmany edges will be added), and edge destination (where are

the added edges), where they ignore the deletion of nodes and

edges. Then, they assign variables and corresponding equations

(i.e., models) to parameterize these three processes and use MLE

(i.e., maximum likelihood estimation) to settle the model and

scalar parameters based on real-world graph observation. As

an instance, the edge destination (i.e., the probability for node

u connecting node v) is modeled as lastτ other than degτ for

the LinkedIn network through MLE, where degτ means the

connection probability is proportional to node v’s current degree

dt(v)
τ . And lastτ means the probability is proportional to node

v’s age since its last interaction δt(v)
τ , where τ is the parameter

to be fit.

Discovering graph laws and fitting law corresponding

parameters can also serve many graph mining tasks and real-

world applications. For example, after a graph law is discovered,

the follow-up action is to propose the corresponding graph

generative model to test whether there exists a realizable graph

generator could generate graphs while preserving the discovered

law in terms of graph properties (Leskovec et al., 2005, 2008;

Park and Kim, 2018; Zang et al., 2018; Do et al., 2020; Kook

et al., 2020; Zeno et al., 2020). Recently, the triadic closure

law on temporal graphs (i.e., two nodes that share a common

neighbor directly tend to connect) has been discovered to

contribute to the dynamic link prediction task (Wang et al.,

2021b). For the questions in social network analysis, e.g., “What

is Twitter?”, Kwak et al. (2010) give the statistical answer

in the form of parametric representation. For pre-training

the language model, the values of the weighted word co-

occurrence matrix (i.e., adjacency matrix) are necessary and

highly depend on the parameters following the power law, e.g.,

in GloVe (Pennington et al., 2014), Xij denotes the number

of times that word j occurs in the context of word i, and it

follows Xij = k
(rij)α

, where rij denotes the frequency rank of

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

the word pair i and j in the whole corpus, and k and α are

constant parameters.

2.2.3. Graph visualization (visual representation)

Third, graph visualization provides visual representation

by plotting the graph directly, which is more straightforward

than graph embedding and graph law to some extent. Hence,

one of the research goals in graph visualization is finding the

appropriate layout for the complex networked data. To name a

few: most graphs (e.g., a five-node complete graph) could not

be plotted on the plane without edge crossings, then Chen K.

et al. (2020) give the solution about how to use a 3D torus to

represent the graph and then flatten the torus onto the 2D plane

with aesthetics and representation accuracy preserved; Also,

in Nobre et al. (2020), authors evaluate which layouts (e.g., node-

link diagram or matrix) are suitable for representing attributed

graphs for different graphmining tasks; Through crowd-sourced

experiments, Yang Y. et al. (2020) study the tactile representation

of graphs for low-vision people and discuss which one (e.g., text,

matrix, or node-link diagram) could help them to understand

the graph topology; When the graph is large (e.g., hundreds of

thousands of nodes), it is hard to represent the internal structure,

and Nassar et al. (2020) design the high-order view of graphs

(i.e., construct k-clique weighted adjacency matrix) and then

use t-SNE to get the two-dimensional coordinates from the

weighted Laplacian matrix. Bringing time information to graph

visualization started in the 1990s to deal with the scenario where

the represented graph gets updated (Beck et al., 2014). The trend

for visualizing dynamic (or temporal) graphs becomes popular,

and different research goals emerge (Kerracher et al., 2014; Beck

et al., 2017), like strengthening the domain-specific evolution

for domain experts (Bach et al., 2015), showing the pandemic

dissemination (Lacasa et al., 2008; Tsiotas and Magafas, 2020),

explaining time-series data (e.g., response time to different

questions) with graph visualization and graph law (Mira-Iglesias

et al., 2019).

Plotting graphs into an appropriate layout is more

challenging when it comes to complex evolving graphs.

Hence, many dynamic graph visualization research works

contribute their solutions from different angles. For example, for

balancing the trade-off between temporal coherence and spatial

coherence (i.e., preservation of structure at a certain timestamp),

Leydesdorff and Schank (2008) use the multidimensional

scaling (MDS) method. Inspired by that, Xu et al. (2013)

design the dynamic multidimensional scaling (DMDS), and

Rauber et al. (2016) design the dynamic t-SNE; In order to

assign end-users the flexibility to view the different aspects

of evolving graphs (e.g., time-level graph evolution or node-

level temporal evolution), Bach et al. (2014) represent evolving

graphs into user-rotating cubes; To highlight the temporal

relation among graph snapshots, authors in Bach et al. (2016)

propose Time Curves to visualize the temporal similarly between

two consecutively observed adjacency matrices; In Lentz et al.

(2012) and Pfitzner et al. (2012), researchers find that paths

in temporal networks may invalidate the transitive assumption,

which means the paths from node a to node b and from node

b to node c may not imply a transitive path from node a via

node b to node c. Inspired by this observation and to further

analyze the actual length of paths in temporal graphs, Scholtes

(2017) transfer this problem into investigating the order (i.e.,

k) of graphs. To be specific, the order k can be understood

as the length of a path (i.e., vi−k → . . . → vi−1 → vi)

and can be modeled by the high-order Markov Chain [i.e.,

P(vi|vi−k → . . . → vi−1)]. And the order of temporal

paths can be determined by thresholding the probability gain in

the MLE model. A corresponding follow-up visualization work

is proposed targeting the high-order temporal graphs (Perri

and Scholtes, 2019), which first determines the order of a

temporal network as discussed above, and then constructs

intermediate supernodes for deriving the high-order temporal

relationship between two nodes, finally plots this high-order

temporal relationship into edges and adds them on a static graph

layout.

2.3. Graph neural networks

To extract the hidden representation, graph neural network

(GNN), as a powerful tool, provides a new idea different

from the embedding methods like DeepWalk (Perozzi et al.,

2014), LINE (Tang et al., 2015), and node2vec (Grover and

Leskovec, 2016). One major difference between GNNs and those

mentioned above is that GNNs could aggregate multi-hop node

features to represent a node by stacking GNN layers. According

to Xu K. et al. (2019), this mechanism is called information

aggregation (or message-passing in some literature), which

iteratively updates the representation vector of a node by

aggregating the representation vectors from its neighbors. The

general formula of GNNs can be expressed as follows.

a(k)v = AGGREGATE(k)({h(k−1)
u : u ∈ N (v)}),

h(k)v = COMBINE(k)(h(k−1)
v , a(k)v) (1)

where h(k)v is the hidden representation vector of node v at

the k-th iteration (i.e., k-th layer), and a(k)v is the aggregation

among hidden representation vectors of neighborsN (v) of node

v from the last iteration (i.e., layer). For example, the graph

convolutional neural network (GCN) (Kipf and Welling, 2017)

can be written in the above formulation by integrating the

AGGREGATE and COMBINE as follows.

h(k)v = ReLU(W(k−1) ·MEAN{h(k−1)
u ,∀u ∈ N (v) ∪ {v}}) (2)

whereW(k−1) is a learnable weight matrix at the (k−1)-th layer,

and the original equation of GCN is as follows.

H(k) = ReLU(ÂH(k−1)W(k−1)) (3)

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

where Â is the normalized adjacency matrix with self-loops, i.e.,

Â = D̃− 1
2 ÃD̃− 1

2 , and Ã = A+ I.

Graph neural network is a complicated computational

framework that integrates the neural networks from deep

learning and non-Euclidean constraints from graph theory.

Therefore, GNN research consists of many specific facets from

both ends. For example,

• Neural layer architecture design: Recurrent (Li et al., 2018;

Hajiramezanali et al., 2019), Residual Connections (Chen

M. et al., 2020; Zheng et al., 2022), etc.

• Message passing schema: Spectral convolution (Kipf and

Welling, 2017), Spatial convolution (Velickovic et al.,

2018), Simplification (Klicpera et al., 2019; Wu et al., 2019),

etc.

• Training manner: Semi-supervised learning (Kipf and

Welling, 2017), Self-supervised learning (Velickovic et al.,

2019; You et al., 2020), etc.

• Sampling strategy: Noises-aware (Yang Z. et al., 2020),

Efficiency and generalization (Hu S. et al., 2020), Fairness-

preserving (Kang et al., 2022), etc.

• Model trustworthy: Attack and defend (Zhu et al., 2019;

Zhang and Zitnik, 2020), Black-box explanation (Ying et al.,

2019; Luo et al., 2020; Vu and Thai, 2020), etc.

• many more . . .

Until now, we have introduced three aspects of graph

research shown in Figure 1. Targeting each aspect, research in

natural and artificial dynamics could contribute to performance

improvements. The detailed related works are discussed in the

next section, where we start by defining the natural and artificial

dynamics in graphs, and then investigate how natural and

artificial dynamics help graph research enhancements in each

specific aspect.

3. Natural and artificial dynamics in
graphs

Natural dynamics in graphs means that the input graph

(to graph mining, graph representations, and GNNs) has the

naturally evolving part(s), such as the evolving World Wide

Web. Formally speaking, the naturally evolving part means that

the topological structures or node (edge, subgraph, or graph)

features and labels depend on time. To be specific, the evolving

graph structures can be represented either in

• (1) continuous time (Kazemi et al., 2020) or

streaming (Aggarwal and Subbian, 2014): an evolving

graph can be modeled by an initial state G with a set of

timestamped events O, and each event can be node/edge

addition/deletion; or

• (2) discrete time (Kazemi et al., 2020) or

snapshots (Aggarwal and Subbian, 2014): an evolving

graph can be modeled as a sequence of time-respecting

snapshots G(1),G(2), . . . ,G(T), and each G(t) has its own

node set V(t) and edge set E(t).

For these two modelings, the corresponding time-dependent

features and labels can be represented in a time-series or a

sequence of matrices such as X(1),X(2), . . . ,X(T).

These twomodelingmethods have non-trivial complements.

For example, continuous-time models rapid node/edge-level

evolution, i.e., microscopic evolution (Leskovec et al., 2008),

such as protein molecule interactions in a cell (Fu and He,

2021a); However, it could not represent the episodic and

slowly-changing evolution patterns, which can be captured

by discrete-time, i.e., macroscopic evolution (Leskovec et al.,

2005), such like the periodical metabolic cycles in a cell (Fu

and He, 2021a). Recently, different evolution patterns in a

single graph are currently not jointly modeled for improving

graph representation comprehensiveness, but some real-world

evolving graphs naturally have both evolution patterns. For

example, in Fu and He (2021a), each dynamic protein-protein

interaction network has 36 continuous observations (i.e., 36 edge

timestamps), every 12 observations compose a metabolic cycle

(i.e., three snapshots), and each cycle reflects 25 mins in the real

world. Inspired by this observation, a nascent work (Fu et al.,

2022b) is recently proposed to jointly model different evolution

patterns into the graph representation.

Artificial dynamics in graphsmeans that the graph research

related elements (e.g., graph topology, graph stream, node/graph

attributes/labels, GNNs gradients, and neural architectures, etc.)

are deliberately re-designed by end-users for boosting the task

performance in certain metrics. For the re-designing, end-

users can change (e.g., filter, mask, drop, or augment) the

existing elements or construct (i.e., from scratch) non-existing

elements to improve the performance (e.g., decision accuracy,

model robustness, and interpretation, etc.) than the original. To

name a few, one example of artificial dynamics can be graph

augmentation: DropEdge (Rong et al., 2020) is proposed to

deal with the over-fitting of GNNs by randomly removing a

certain amount of edges from the input graphs for each training

epoch; DummyNode (Liu X. et al., 2022) is proposed to add

a dummy node to the directed input graph, which connects

all existing n nodes with 2n directed edges. The dummy node

serves as a highway to extend the information aggregation in

GNNs and contribute to capturing the global graph information,

such that the graph classification accuracy by GNNs can be

enhanced. In addition to the graph augmentation, other specific

examples of artificial dynamics can be filtering unimportant

coming sub-structures to save computations (Fu et al., 2020e),

adding residual connections among GNNs layers to address

vanishing gradients (Zheng et al., 2022), and perturbing the

GNNs gradients for privacy protection (Yang et al., 2021).

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

As mentioned above, on the one hand, considering the

natural dynamics could leverage temporal dependency to

contribute to graph research in terms of but not limited to, fast

computation (e.g., tracking from the past instead of computing

from scratch), causality reasoning (e.g., previous states cause

the current state), comprehensive decision (e.g., prediction

based on historical behaviors); On the other hand, studying

artificial dynamics could help a wide range of targets, such as

machine learning effectiveness (e.g., robustness, de-overfitting,

de-oversmoothing).

Investigating natural dynamics and investigating artificial

dynamics not only have shared merits but also have exclusive

advantages. For example, how to manipulate evolving graphs

is still an opening question for many downstream task

improvements. Thus, a spontaneous research question is to

ask whether natural dynamics can be integrated with artificial

dynamics, which aims to keep the shared merits and bring

exclusive advantages to synergy complementation. Definitely,

some pioneering works have been proposed to touch this area.

To introduce them, throughout the paper, we use natural

+ artificial dynamics to denote the integrated investigation

of natural dynamics and artificial dynamics in graph-related

research and then present related works in this category.

Starting from the following subsections, we are ready to

introduce recent related works about natural, artificial, and

natural + artificial dynamics research in graph mining, graph

representations, and GNNs, respectively.

3.1. Dynamics in graph mining

Graph mining is a general term that consists of various

specific mining tasks on graphs. Classic graph mining tasks

consist of node clustering (or graph partitioning), node/graph

classification, and link prediction. Also, motivated by real

world application scenarios, novel graph mining tasks are

being proposed for research, such as graph generation, graph

alignment, and many more. Facing various graph mining

tasks, we discuss several graph mining tasks here and then

introduce the corresponding related works of natural dynamics,

artificial dynamics, and natural + artificial dynamics in each

discussed task.

3.1.1. Natural dynamics in graph mining

Link prediction. The core of the link prediction task is

to decide whether there should be a link between two entities

in the graph. This graph mining task can directly serve the

recommender system by modeling the user and items as nodes

in their interaction graphs. The evidence to decide whether two

nodes should be linked can be the current heuristics like node

embedding similarity (Zhang and Chen, 2018; Zhu et al., 2021),

and also the historical behaviors of entities can be added for

a more comprehensive decision. For example, JODIE (Kumar

et al., 2019) is a link prediction model proposed based on user-

item temporal interaction bipartite graph, where a user-item

interaction is modeled as (u, i, t, f) that means an interaction

happens between user u and item i at time t, and f is the input

feature vector of that interaction. Given a user (or an item)

has a sequence of historical interactions (i.e., a user interacts

with different items at different timestamps), JODIE (Kumar

et al., 2019) applies two mutually-recursive RNN structures (i.e.,

RNNU and RNNI) to update the embedding for users and items

as follows.

u(t) = σ (Wu
1 u(t−)+Wu

2 i(t−)+Wu
3 f+Wu

4 1u),

embedding unit of RNNU (4)

i(t) = σ (Wi
1 i(t

−)+Wi
2 u(t

−)+Wi
3 f+Wi

4 1i),

embedding unit of RNNI

where Wu
1 , W

u
2 , W

u
3 , and Wu

4 are four parameters of RNNU .

And RNNU and RNNI share the same intuitive logic. Suppose

user u interacts with item i at time t with the interaction feature

f, then the above equation RNNU updates the user embedding

u(t) at time t by involving the latest historical user and item

behavior, where 1u denotes the time elapsed since user u’s

previous interaction with any item, u(t−) denotes the latest user
embedding vector right before time t, and i(t−) denotes the

latest item embedding vector right before time t. Therefore, in

JODIE, each user (or item) can have a sequence of embedding

vectors, which is called its trajectory. And the user and item

embeddings can be updated iteratively to the future. The training

loss is designed for whether the future user (or item) embedding

vectors can be predicted.3 If the future embedding can be

predicted [e.g., u connects i at t, and i(t) is predicted through

u(t−) and i(t−)], then the user (or item) historical evolution

pattern is supposed to be encoded. Thus, the trained model can

be used to predict whether a user u interacts with an item i in the

future.

Graph alignment. Compared with classic graph mining

tasks, graph alignment is a relatively novel graph mining task,

aiming to find paired (i.e., similar) nodes across two graphs. The

input graphs can be attributed (e.g., heterogeneous information

networks or knowledge graphs), and the proximity to decide

whether two nodes from two different graphs are paired or not

can range from their attributes, their neighborhood information

(e.g., neighbor nodes attributes, connected edges’ attributes,

induced subgraph topology), etc. (Zhang and Tong, 2016; Yan

et al., 2021b; Zhou et al., 2021). When aligning two graphs in the

real world, the inevitable problem is that the input graphs are

evolving in terms of features and topological structures. To this

end, Yan et al. (2021a) combine two graphs into one graph, and

then propose the GNN-based fast computation graph alignment

3 The future embedding vector estimation for users and items is skipped

here.

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

method instead of re-training the GNN from scratch for each

update of the combined graph. Specifically, authors want to

encode the topology-invariant node embedding by training a

GNN model, then fine-tune this trained GNN model with

updated local changes (e.g., added nodes and edges, updated

node input features). Thus, to weaken the coupling between

the graph topology (e.g., adjacency matrix A) and the GNN

parameter matrix [e.g., W(k) at the k-th layer], authors select

GCN (Kipf and Welling, 2017) as the backbone and change

its information aggregation schema by introducing a topology-

invariant mask gateM(k) and a highway gate T (k) as follows.

H(k) = σ (ÂM(k−1)(H(k−1))W(k−1))

H(k) = T (k−1)(H(k−1))⊙H(k) + (1− T (k−1)(H(k−1)))

⊙H(k−1)

(5)

where ⊙ denotes Hadamard product, topology-

invariant mask gate M(k−1)(H(k−1)) equals to

H(k−1) ⊙ σ (W(k−1)
m), highway gate T (k−1)(H(k−1)) is

expressed as σ (M(k−1)(H(k−1))W(k−1)
h

), and W(k−1)
m and

W(k−1)
h

are learnable parameters of M(k−1) and T (k−1). The

training loss function depends on whether the embedding

vectors of two paired nodes (i.e., positive samples) are close, and

whether the embedding vectors of two not paired nodes (i.e.,

negative samples) are far away. With this trained GNN model,

future updates can be regarded as additional training samples to

fine-tune the model.

3.1.2. Artificial dynamics in graph mining

Graph secure generation or graph anonymization. Graph

generation is the task that models the given graphs’ distribution

and then generates many more meaningful graphs, which

could contribute to various applications (Bonifati et al., 2020).

However, approximating the observed graph distributions as

much as possible will induce a privacy-leak risk in the generated

graphs. For example, a node’s identity is highly likely to be

exposed in the generated social network if its connections are

mostly preserved, which means a degree-based node attacker

will easily detect a vulnerability in the generated graph with

some background knowledge (Wu et al., 2010). Therefore, graph

secure generation or graph anonymization is significant to social

security (Fu et al., 2022c).

To protect privacy during the graph generation, artificial

dynamics can help by introducing the perturbations during the

modeling (or learning) of graph distributions. However, adding

this kind of artificial dynamics to protect graph privacy still

serves for the static graph generation. How to add dynamics to

evolving graphs to protect privacy is still an opening question.

For privacy-preserving static graph generation, current

solutions can be roughly classified into two types. First, the

artificial dynamics is directly performed on the observed

topology to generate new graph data, to name a few,

• Randomize the adjacency by iteratively switching existing

edges {(t,w) and (u, v)} with {(t, v) and (u,w)} (if (t, v)

and (u,w) do not exist in the original graph G), under the

eigendecomposition preservation (Ying and Wu, 2008).

• Inject the connection uncertainty by iteratively copying

each existing edge from original graph G to a initial null

graphG′ with a certain probability, guaranteeing the degree
distribution of G′ is unchanged compared with G (Nguyen

et al., 2015).

• Permute the connection distribution by proportionally

flipping the edges (existing to non-existing and vice versa),

maintaining the edge-level differential privacy (edge-DP)

for the graph structural preservation (Qin et al., 2017).

Second, following the synergy of deep learning and

differential privacy (Abadi et al., 2016), another way to add

artificial dynamics is targeting the gradient of deep graph

learning models. To be specific, a deep graph generative model

is recently proposed under privacy constraints, i.e., in Yang et al.

(2021), privacy protection mechanism is executed during the

gradient descent phase of the generation learning process, by

adding Gaussian noise to the gradient.

In terms of how to design appropriate artificial dynamics

for the evolving graph secure generation, it is still a challenging

problem because of maintaining privacy guarantee and utility

preservation simultaneously. Here we would like to share our

thoughts that the next-generation techniques should address the

following challenges, at least.

• Unlike static graphs, what kind of natural dynamic

information is sensitive in evolving graphs and should be

hidden in the generated graph to protect entities’ privacy is

not clear.

• After the sensitive information is determined, the

protection mechanism in the evolving environment is not

yet available, e.g., dealing with changing topology and

features.

• When the corresponding protection mechanism is

designed, it can still be challenging to maintain the

generation utility at the same time with privacy constraints.

3.1.3. Natural + artificial dynamics in graph
mining

Asmentioned in the above subsection, not only for the graph

secure generation, adding artificial dynamics to evolving graphs

is still nascent in many graph mining tasks, and exists many

research opportunities. Here, we introduce a recent work that

adds artificial dynamics to the time-evolving graph partitioning

to improve computation efficiency.

Node clustering or graph partitioning. In the node

clustering family, local clustering methods target a specific seed

node (or nodes) and obtain the clustering by searching the

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

FIGURE 2

Local cluster C(t) and a “far-away” edge to be filtered at time t.

neighborhood instead of the entire graph. In this paper (Fu

et al., 2020e), authors propose the motif-preserving local

clustering method on temporal graphs called L-MEGA, which

approximately tracks the local cluster position at each timestamp

instead of solving it from scratch. To make L-MEGA more

efficient, one speedup technique is proposed in Fu et al. (2020e)

to filter the new arrival edges instead of letting them go into the

tracking process and save them for future timestamps, if the new

arrival edges are “far-away” from the current local cluster and

do not affect the local structure as shown in Figure 2. By doing

which, the tracking time complexity can be saved. In order to

investigate whether a new arrival edge can be filtered, the authors

identify the “far-away” edges by analyzing its incident nodes in

terms of the probability mass in the personal PageRank vector

and the shortest path to the local cluster.

3.2. Dynamics in graph representations

In this section, we mainly discuss graph embedding

(i.e., graph representation learning) as one instance of graph

representations, and introduce related works about how natural

dynamics and artificial dynamics are involved in boosting the

performance of graph representation learning.4

3.2.1. Natural dynamics in graph
representations

In the early stage, inspired by DeepWalk (Perozzi

et al., 2014), LINE (Tang et al., 2015), and

4 Here, we select graph embedding (i.e., graph representation learning)

as an instance of graph representations to introduce the corresponding

natural and artificial dynamic techniques. Since GNN is a also kind

of tool for graph representation learning, then in this Section 3.2,

we introduce the dynamic techniques that can be applied to general

graph representation learning models. In Section 3.3, for GNNs, we will

introduce the dynamic techniques that are deliberately designed for

GNNs, which may or may not be applied to the general graph embedding

models like DeepWalk, LINE, node2vec, etc.

node2vec (Grover and Leskovec, 2016), the graph

embedding methods for temporal graphs are proposed,

like CDTNE (Nguyen et al., 2018), DyGEM (Goyal et al., 2018),

DynamicTriad (Goyal et al., 2018), HTNE (Zuo et al., 2018),

FiGTNE (Liu et al., 2020), and tdGraphEmbd (Beladev et al.,

2020). They vary in different ways to deal with time information.

For example, FiGTNE (Liu et al., 2020) utilizes the temporal

random walk to sample time-adjacent nodes. In this sampled

sequence, the embedding is regularized such that previous

nodes should reflect the current node.

Recently, inspired by GNNs stacking layers to aggregate

multi-hop neighbor information to get node embedding

vectors, temporal graph neural networks (TGNNs) are proposed

to consider time information when doing the information

aggregation, like EvolveGCN (Pareja et al., 2020), TGAT (Xu

et al., 2020), and many others. In some works, they are

also called spatial-temporal graph neural networks (STGNNs)

because the spatial information comes from the input graph

topological structure (Wu et al., 2021). In this paper,

we use the term temporal graph neural networks, i.e.,

TGNNs, and the detailed related works for TGNNs are

introduced in Section 3.3.1, i.e., Natural Dynamics in Graph

Neural Networks.

Multiple evolution patterns in representation learning.

As discussed earlier, in the real world, an evolving graph

may have multiple evolution patterns (Fu and He, 2021a).

Therefore, how to integrate multiple evolution patterns

jointly during the representation learning process is still a

nascent problem.

Generally speaking, if we model each evolution pattern as a

different view of the input graph, then VANE (Fu et al., 2020d)

could get the node embedding that is suitable for each observed

view. Specifically, Temp-GFSM (Fu et al., 2022b) is proposed,

which deliberately targets the streaming pattern for rapid

node/edge-level evolution and the snapshot pattern for episodic

and slowly-changing evolution, as shown in Figure 3. In Temp-

GFSM, a multi-time attention mechanism is introduced with

the support of the time kernel function to get the node-level,

snapshot-level, and graph-level embeddings across different

evolution patterns.

3.2.2. Artificial dynamics in graph
representations

Pre-training for representation learning with

masked graph signals. Generally speaking, training graph

representation learning models (e.g., GNNs) is usually executed

in the (semi-)supervised setting that requires a considerable

amount of labeled data, especially when the input graphs are

large. However, in some domains (e.g., healthcare, Choi et al.,

2017), collecting high-quality labeled graph data is usually time-

consuming and costly. Therefore, recent advances have focused

on the GNN pre-training (Hu W. et al., 2020; Hu Z. et al.,

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

FIGURE 3

Panel (A) shows a streaming graph with only edge timestamps te. Panel (B) shows a snapshot-modeled graph with only snapshot timestamps ts,

where each ts elapses every 4 te. Panel (C) shows our multi-time evolution modeling with edge timestamps ts and snapshot timestamps te.

2020; Qiu et al., 2020; Li et al., 2021; Xu et al., 2021; Zhou et al.,

2022), which pre-trains GNN models on the source domain(s)

via proxy graph signals and then transfers pre-trained GNNs

to the target domain. One common way of realizing proxy

graph signal learning is to mask the input graphs in the unit of

graph signals and train the GNNs such that they can predict the

masked signals from the unmasked part. The masked signals

range from masked node/edge/subgraph attributes and masked

topology (e.g., nodes and edges) (HuW. et al., 2020; Hu Z. et al.,

2020).

The quality of pre-trained GNNs can largely rely on

(1) the relevance between the source domain(s) and the

target domain and (2) the selection of masked graph

signals, which may cause the negative transfer (Rosenstein

et al., 2005) if (1) the source domain distribution diverges

from the target domain distribution (i.e., cross-graph

heterogeneity) or masked graph signals contradict each

other (i.e., graph-signal heterogeneity) (Zhou et al., 2022).

Inspired by that, Zhou et al. (2022) propose the MentorGNN

to realize the domain-adaptive graph pre-training. To

address the cross-graph heterogeneity, MentorGNN utilizes

the multi-scale encoder–decoder architecture, such that

knowledge transfer can be done in a coarser resolution

(i.e., transfer the encoded source domain knowledge and

decode it in the target domain) instead of being directly

translated. The intuition behind this is that it is more common

for different domain graphs to share high-level knowledge

than very detailed knowledge. To address the graph-signal

heterogeneity, MentorGNN dynamically re-weighting the

importance of different kinds of masked graph signals via the

curriculum learning framework in terms of the target domain

performance.

3.2.3. Natural + artificial dynamics in graph
representations

Inserting masks to preserve evolution patterns during

temporal graph representation learning. Compared with

baseline methods designed for static graph representation

learning, considering the temporal information is more

challenging and requires more consideration, like how

to capture the evolution patterns of input graphs. In

DySAT (Sankar et al., 2020), besides using structural attention

like GAT (Velickovic et al., 2018) in each observed snapshot,

authors design the temporal self-attention to get the node

representation sequence from the first timestamp to the last

timestamp, i.e., zv = {z(1)v , z(2)v , . . . , z(T)v }, for node v at each

observed timestamp. To preserve the evolution patterns when

encoding zv, authors design the mask matrixM as follows.

Zv =Bv(XvWv), Bv(i, j) =
exp(e

ij
v)

∑T
k=1 exp(e

ik
v)

e
ij
v =(

(XvWq)(XvWk)
⊤
ij√

F
+M(i, j)), i, j ∈ {1, . . . ,T}

(6)

where matrices Wq ∈ R
D×F , Wk ∈ R

D×F , and Wv ∈ R
D×F

are query, key, value matrices in the standard self-attention

mechanism (Vaswani et al., 2017). Xv ∈ R
T×D is the node

feature of node v across all T timestamps, and Zv ∈ R
T×F is

the output time-aware representation matrix of node v. And e
ij
v

is the attention weight of timestamp i to timestamp j for node v,

which is obtained through the mask matrixM ∈ R
T×T .

M(i, j) =

0, i ≤ j

−∞, otherwise
(7)

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

The introduction ofM preserves the evolution pattern in an

auto-regressive manner. To be specific, when M(i, j) = −∞,

the softmax attention weight Bv(i, j) = 0, which turns off the

attention weight from timestamp i to timestamp j.

3.3. Dynamics in graph neural networks

In this section, we focus on a specific kind of graph

representation learning tool, graph neural network (GNN),

and see how natural dynamics and artificial dynamics work in

GNNs.5

3.3.1. Natural dynamics in graph neural
networks

Temporal graph neural networks (TGNNs). For TGNNs,

the general principle is that the input graphs are evolving,

e.g., the graph structure or node attributes are dependent

on time. Since TGNNs take the graphs as input and the

topological information is also called spatial information in

some applications like traffic modeling (Li et al., 2018; Yu B.

et al., 2018), TGNNs are also called spatial-temporal graph

neural networks (STGNNs or ST-GNNs) in some works (Wu

et al., 2021). Here, we use the term TGNNs. How to deal

with time information appropriately during the vanilla GNNs’

information aggregation process is the key idea for TGNNs.

Different works propose different manners, not limited to the

following list.

• CNN-based TGNNs: In Yan et al. (2018) and Yu B.

et al. (2018), authors apply the convolutional operations

from convolutional neural networks (CNNs) on graphs’

evolving features to capture time-aware node hidden

representations.

• RNN-based TGNNs: In Li et al. (2018), Hajiramezanali

et al. (2019), and Pareja et al. (2020), authors inserts the

recurrent units (from various RNNs such like LSTM and

GRU) into GNNs to preserve the temporal dependency

during the GNNs’ representation learning process.

• Time Attention-based TGNNs: In Sankar et al. (2020),

authors propose using the self-attention mechanism on

time features to learn the temporal correlations along with

node representations.

• Time Point Process-based TGNNs: In Trivedi et al.

(2019), authors utilize Time Point Process to capture the

interleaved dynamics and get time features.

5 As mentioned earlier, in this Section 3.3 we introduce the natural and

artificial dynamic techniques that are deliberately designed for GNNs,

which may or may not be applied to the general graph embedding

models.

• Time Kernel-based TGNNS: In Xu et al. (2020), authors use

Time Kernel to project time to a differential domain for the

time representation vectors.

Let’s take TGAT (Xu et al., 2020) as an instance of TGNNs, to

illustrate the mechanism of encoding the temporal information

into the node representations. TGAT uses the Time Kernel

function K to project every observed time interval of node

connections into a continuous differentiable functional domain,

i.e., K :[t − 1t, t] → R
d, in order to represent the time feature

during the information aggregation mechanism of GNNs. Since

TGAT is inspired by the self-attention mechanism (Vaswani

et al., 2017), another benefit of introducing the Time Kernel

is that the projected hidden representation vector can serve as

the positional encoding in the self-attention mechanism. Time

Kernel K can be realized by different specific functions (Xu D.

et al., 2019). For example, in TGAT (Xu et al., 2020),

K(te − 1t, te) = 9(te − (te − 1t)) = 9(1t) (8)

and

9(1t) =
√

1

d
[cosω1(1t), cosω2(1t), . . . , cosωd(1t)] (9)

where 1t = te − (te − 1t) denotes the input time interval, and

{ω1, . . . ,ωd} are learnable parameters.

With the above time encoding, TGAT can learn node

representation h(t)v for node v at time t through a self-attention-

like mechanism. Especially, TGAT sets node v as the query node

to query and aggregate attention weights from its one-hop time-

aware neighbors, N
(t)
v , to get h(t)v . In N

(t)
v , for each neighbor

node v′, its node feature is the combination of the original input

feature with the time kernel feature, i.e, [xv′‖K(t′, t)] ∈ R
(m+d),

where xv′ ∈ R
m is the original input feature of node v′,K(t′, t) ∈

R
d is the encoded temporal feature, and t′ is the time when node

v′ and v connects.

3.3.2. Artificial dynamics in graph neural
networks

Graph augmentation for GNNs. One straightforward

example to show artificial dynamics in GNNs is the graph

augmentation designed for GNNs. In general, drop operations

can also be considered a kind of augmentation operation (Rong

et al., 2020). Because dropping parts of the input graph canmake

a new input graph, such that the volume and diversity of input

graphs increase. In this viewpoint, at least, graph augmentation

for GNNs can be categorized into three items.

• Only drop operation: In Rong et al. (2020), authors propose

DropEdge to drop a certain amount of edges in the input

graphs before each epoch of GNN training, to alleviate

the over-fitting problem of GNNs. Similar operations also

include DropNode (Feng et al., 2020).

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

• Only add operation: In Gilmer et al. (2017), authors

propose to add a master node to connect all existing

nodes in the input graph, which operation could serve

as a global scratch for the message passing schema and

transfer long distance information, to boost the molecule

graph prediction.

• Refine operation: In Jin et al. (2020), authors consider the

problem setting given the input graph is not perfect (e.g.,

the adjacency matrix is poisoning attacked by adversarial

edges). To be specific, they aim to investigate the low-

rank property and feature smoothness to refine (i.e., not

restricted to only adding or dropping) the original input

graph and obtain the satisfied node classification accuracy.

More detailed operations like those mentioned above can

be found in Ding et al. (2022), where these augmentation

operations can also be further categorized into learnable actions

and random actions.

Adding residual connections among GNN layers. When

the input graph is imperfect (Xu et al., 2022) [e.g., topology

and features are not consistent, features are partially missing],

stacking more layers in GNNs can aggregate information

from more neighbors to make the hidden representation more

informative and serve various graph mining tasks (Zheng et al.,

2022). However, the vanishing gradient problem hinders the

neural networks from being deeper by making it hard-to-train,

i.e., both the training error and test error of deeper neural

networks are higher than shallow ones (He et al., 2016). The

vanishing gradient problem can be illustrated as the gradients

of the first few layers vanish, such that the training loss cannot

be successfully propagated through deeper models. Currently,

nascent deeper GNN methods (Li et al., 2019; Rong et al., 2020;

Zhao and Akoglu, 2020) solve this problem by adding residual

connections (i.e., ResNet, He et al., 2016) on vanilla GNNs. In

a recent study (Zheng et al., 2022), authors find that ResNet

ignores the non-IID property of graphs, and directly adding

ResNet on deeper GNNs will cause the shading neighbors effect.

This effect distorts the topology information by making faraway

neighbor information more important in deeper GNNs, such

that it adds noise to the hidden representation and degrades the

downstream task performance.

To address the shading neighbors effect, Zheng et al. (2022)

design the weight-decaying graph residual connection (i.e.,

WDG-ResNet) deliberately for GNNs, as shown in Figure 4,

which is expressed as follows.

H̃(k) = σ (ÂH(k−1)W(k−1)),

/*l-th layer of an arbitrary GNN, e.g., GCN*/

H(k) = sim(H(1), H̃(k)) · e−k/λ · H̃(k) +H(k−2),

/*residual connection*/ (10)

= ecos(H
(1),H̃(k)) − k/λ · H̃(k) +H(k−2)

where cos(H(1), H̃(k)) = 1
n

∑

i
H(1)
i (H̃(l)

i)⊤

‖H(1)
i ‖‖H̃(l)

i ‖
measures the

similarity between the k-th layer and the 1-st layer, and H(1)
i is

the hidden representation of node i at the 1-st layer. The term

e−l/λ is the decaying factor to further adjust the similarity weight

of H̃(l), where λ is a constant hyperparameter. Compared to the

vanilla ResNet (He et al., 2016), the WDG-ResNet introduces

the decaying factor to preserve the hierarchical information

of input graphs when the GNNs go deeper to alleviate the

shading neighbors effect. Moreover, the authors empirically

show that the optimal decaying factor is close to the diameter

of input graphs, and such heuristics reduce the search space for

hyperparameter optimization.

3.3.3. Natural + artificial dynamics in graph
neural networks

Augmenting temporal graphs for TGNNs. Augmenting

evolving graphs has considerable research potential but has not

attracted much attention yet (Ding et al., 2022). MeTA, Wang

et al. (2021a) proposes an adaptive data augmentation approach

for improving temporal graph representation learning using

TGNNs. The core idea is modeling the realistic noise and adding

the simulated noise to the low-information area of graphs (e.g.,

long time and far neighbors), in order to decrease the noise

uniqueness for de-overfitting and increase the generalization

ability of temporal graph representation learning process, to

finally help downstream tasks such as link prediction. In Wang

et al. (2021a), authors propose three augmentation strategies: (1)

perturbing time by adding Gaussian noise; (2) removing edges

with a constant probability; (3) adding edges (i.e., sampled from

the original graph) with perturbed time.

Research about augmenting temporal graphs is still in the

nascent stage. And we would like to share, at least, the following

research directions.

• Data-driven and learnable augmentation strategies for

temporal graphs.

• Bounded augmentation solutions on temporal graphs, i.e.,

evolution patterns of original graphs can be preserved to

some extent.

• Transferable and generalizable augmentation techniques

across different temporal graphs.

4. Discussion and summary

In this paper, we first disentangle the graph-based research

into three aspects (i.e., graph mining, graph representations,

and GNNs) and then introduce the definition of natural and

artificial dynamics in graphs. After that, we introduce related

works in each combination between {graph mining, graph

representations, and GNNs} and {natural dynamics, artificial

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

FIGURE 4

Adding weight-decaying residual connections on an arbitrary GNN architecture.

dynamics, and natural + artificial dynamics}. In general, the

topic of natural + artificial dynamics (i.e., adding artificial

dynamics to evolving graphs) is still open in many graph

research areas like graph mining, graph representations, and

GNNs, and we list several opportunities in each corresponding

subsection above. All opinions are authors’ own and to the

best of their knowledge. Also, due to the time limitation, many

outstanding works are not discussed in this paper. We hope this

paper can provide insights to relevant researchers and contribute

to the graph research community.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it for

publication.

Funding

This work is supported by National Science Foundation

under Award No. IIS-1947203, IIS-2117902, and IIS-2137468.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Author disclaimer

The views and conclusions are those of the authors and

should not be interpreted as representing the official policies of

the funding agencies or the government.

References

Abadi, M., Chu, A., Goodfellow, I. J., McMahan, H. B., Mironov, I., Talwar,
K., et al. (2016). “Deep learning with differential privacy,” in CCS ’16: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(SIGSAC 2016) (Vienna), 308–318. doi: 10.1145/2976749.2978318

Aggarwal, C. C., and Subbian, K. (2014). Evolutionary network analysis: a
survey. ACM Comput. Surv. 47, 1–36. doi: 10.1145/2601412

Akoglu, L., Tong, H., and Koutra, D. (2015). Graph based anomaly
detection and description: a survey. Data Min. Knowl. Discov. 29, 626–688.
doi: 10.1007/s10618-014-0365-y

Andersen, R., Chung, F. R. K., and Lang, K. J. (2006). “Local graph partitioning
using pagerank vectors,” in 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06) (Berkeley, CA), 475–486. doi: 10.1109/FOCS.2006.44

Frontiers in BigData 13 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2601412
https://doi.org/10.1007/s10618-014-0365-y
https://doi.org/10.1109/FOCS.2006.44
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

Bach, B., Pietriga, E., and Fekete, J. (2014). “Visualizing dynamic networks
with matrix cubes,” in Conference on Human Factors in Computing Systems (CHI)
(Toronto, ON). doi: 10.1145/2556288.2557010f

Bach, B., Riche, N. H., Fernandez, R., Giannisakis, E., Lee, B., and Fekete, J.-
D. (2015). “Networkcube: bringing dynamic network visualizations to domain
scientists,” in Conference on Information Visualization (InfoVis) 2015 (Chicago, IL).

Bach, B., Shi, C., Heulot, N., Madhyastha, T. M., Grabowski, T. J., and
Dragicevic, P. (2016). Time curves: folding time to visualize patterns of
temporal evolution in data. IEEE Trans. Vis. Comput. Graph. 22, 559–568.
doi: 10.1109/TVCG.2015.2467851

Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2014). “The state of the art
in visualizing dynamic graphs,” in EuroVis 2014: The Eurographics Conference on
Visualization (Swansea). doi: 10.2312/eurovisstar.20141174

Beck, F., Burch, M., Diehl, S., and Weiskopf, D. (2017). A taxonomy and
survey of dynamic graph visualization. Comput. Graph. Forum. 36, 133–159.
doi: 10.1111/cgf.12791

Beladev, M., Rokach, L., Katz, G., Guy, I., and Radinsky, K. (2020).
“tdGraphEmbed: temporal dynamic graph-level embedding,” in CIKM ’20:
Proceedings of the 29th ACM International Conference on Information and
Knowledge Management (Virtual Event), 55–64. doi: 10.1145/3340531.3411953

Bianchi, F. M., Grattarola, D., and Alippi, C. (2020). “Spectral clustering with
graph neural networks for graph pooling,” in Proceedings of the 37 th International
Conference on Machine Learning 2020, PMLR 119 (Virtual Event), 874–883.

Bojchevski, A., Shchur, O., Zügner, D., and Günnemann, S. (2018). “NetGAN:
generating graphs via random walks,” in Proceedings of the 35th International
Conference on Machine Learning, PMLR 80 (ICML 2018) (Stockholm), 610–619.

Bonifati, A., Holubová, I., Prat-Pérez, A., and Sakr, S. (2020). Graph
generators: State of the art and open challenges. ACM Comput. Surv. 53, 1–30.
doi: 10.1145/3379445

Chakrabarti, D., and Faloutsos, C. (2006). Graph mining: Laws, generators, and
algorithms. ACM Comput. Surv. 38, 1–2. doi: 10.1145/1132952.1132954

Chen, K., Dwyer, T., Marriott, K., and Bach, B. (2020). “Doughnets:
visualising networks using torus wrapping,” in CHI 2020 (Honolulu, HI), 1–11.
doi: 10.1145/3313831.3376180

Chen,M.,Wei, Z., Huang, Z., Ding, B., and Li, Y. (2020). “Simple and deep graph
convolutional networks,” in Proceedings of the 37 th International Conference on
Machine Learning, ICML 2020, PMLR 119 (Virtual Event), 1725–1735.

Chiang, W., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C. (2019). “Cluster-GCN:
an efficient algorithm for training deep and large graph convolutional networks,”
in KDD ’19: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2019 (Anchorage AK), 257–266.
doi: 10.1145/3292500.3330925

Choi, E., Bahadori, M. T., Song, L., Stewart, W. F., and Sun, J. (2017). “GRAM:
graph-based attention model for healthcare representation learning,” in KDD ’17:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Halifax NS), 787–795. doi: 10.1145/3097983.3098126

Ding, K., Xu, Z., Tong, H., and Liu, H. (2022). Data augmentation for deep graph
learning: a survey. arXiv:2202.08235. doi: 10.48550/arXiv.2202.08235

Do, M. T., Yoon, S., Hooi, B., and Shin, K. (2020). “Structural patterns and
generative models of real-world hypergraphs,” in KDD ’20: The 26th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (Virtual Event).
doi: 10.1145/3394486.3403060

Dong, Y., Chawla, N. V., and Swami, A. (2017). “metapath2vec: Scalable
representation learning for heterogeneous networks,” in KDD ’17: The 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(Halifax NS).

Drobyshevskiy, M., and Turdakov, D. (2020). Random graphmodeling: a survey
of the concepts. ACM Comput. Surv. 52, 1–36. doi: 10.1145/3369782

Du, B., Zhang, S., Cao, N., and Tong, H. (2017). “FIRST: fast interactive
attributed subgraph matching,” in KDD ’17: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Halifax, NS),
1447–1456. doi: 10.1145/3097983.3098040

Dunlavy, D. M., Kolda, T. G., and Acar, E. (2011). Temporal link prediction
using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data 5, 1–27.
doi: 10.1145/1921632.1921636

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, Y. E., Tang, J., et al. (2019). “Graph
neural networks for social recommendation,” in WWW ’19: The World Wide Web
Conference (San Francisco, CA), 417–426. doi: 10.1145/3308558.3313488

Feng, W., Zhang, J., Dong, Y., Han, Y., Luan, H., Xu, Q., et al. (2020). “Graph
random neural networks for semi-supervised learning on graphs,” in Advances in
Neural Information Processing Systems 33 (NeurIPS 2020) (Virtual Event).

Fu, D., Ban, Y., Tong, H., Maciejewski, R., and He, J. (2022a). “Disco:
Comprehensive and explainable disinformation detection,” in CIKM ’22:
Proceedings of the 31st ACM International Conference on Information and
Knowledge Management (Atlanta, GA), 4848–4852. doi: 10.1145/3511808.3557202

Fu, D., Fang, L., Maciejewski, R., Torvik, V. I., and He, J. (2022b). “Meta-
learned metrics over multi-evolution temporal graphs,” in KDD ’20: The 26th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (Virtual Event).

Fu, D., and He, J. (2021a). DPPIN: a biological repository of
dynamic protein-protein interaction network data. arXiv: 2107.02168.
doi: 10.48550/arXiv.2107.02168

Fu, D., and He, J. (2021b). “SDG: a simplified and dynamic graph neural
network,” in SIGIR 2021 (Virtual Event). doi: 10.1145/3404835.3463059

Fu, D., He, J., Tong, H., and Maciejewski, R. (2022c). Privacy-preserving
graph analytics: secure generation and federated learning. arXiv:2207.00048.
doi: 10.48550/arXiv.2207.00048

Fu, D., Xu, Z., Li, B., Tong, H., and He, J. (2020d). “A view-adversarial
framework for multi-view network embedding,” in CIKM ’20: Proceedings of the
29th ACM International Conference on Information and Knowledge Management
(Virtual Event Ireland), 2025–2028. doi: 10.1145/3340531.3412127

Fu, D., Zhou, D., and He, J. (2020e). “Local motif clustering on time-
evolving graphs,” in KDD ’20: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery and DataMining (Virtual Event CA), 390–400.
doi: 10.1145/3394486.3403081

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinals, O., and Dahl, G. E. (2017).
“Neural message passing for quantum chemistry,” in ICML 2017.

Goyal, P., Kamra, N., He, X., and Liu, Y. (2018). DynGEM: Deep embedding
method for dynamic graphs. arXiv:1805.11273. doi: 10.48550/arXiv.1805.
11273

Grover, A., and Leskovec, J. (2016). “node2vec: Scalable feature learning
for networks,” in KDD ’16: The 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (San Francisco, CA), 855–864.
doi: 10.1145/2939672.2939754

Hajiramezanali, E., Hasanzadeh, A., Narayanan, K. R., Duffield, N., Zhou, M.,
and Qian, X. (2019). “BayReL: Bayesian Relational Learning for multi-omics data
integration,” in Advances in Neural Information Processing Systems 33 (NeurIPS
2020), eds H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(Vancouver, BC).

Hamilton, W. L., Ying, Z., and Leskovec, J. (2017). “Inductive representation
learning on large graphs,” in NIPS’17: Proceedings of the 31st International
Conference on Neural Information Processing Systems (Long Beach, CA),
1025–1035.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Las Vegas, NV). doi: 10.1109/CVPR.2016.90

Hu, S., Xiong, Z., Qu, M., Yuan, X., Côté, M., Liu, Z., et al. (2020). “Graph
policy network for transferable active learning on graphs,” in NIPS’20: Proceedings
of the 34th International Conference on Neural Information Processing Systems (
Vancouver BC), 10174–10185.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V. S., et al. (2020).
“Strategies for pre-training graph neural networks,” in International Conference on
Learning Representations 2020 (Addis Ababa).

Hu, Z., Dong, Y., Wang, K., Chang, K., and Sun, Y. (2020). “GPT-GNN:
generative pre-training of graph neural networks,” in KDD ’20: Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (Virtual Event).

Jin, W., Barzilay, R., and Jaakkola, T. S. (2018). “Junction tree variational
autoencoder for molecular graph generation,” in Proceedings of the 35 th
International Conference onMachine Learning, PMLR 80, ICML 2018 (Stockholm).

Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., and Tang, J. (2020). “Graph structure
learning for robust graph neural networks,” in KDD ’20: Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(Virtual Event).

Jing, B., Park, C., and Tong, H. (2021). HDMI: High-order Deep Multiplex
Infomax. WWW 2021.

Kamvar, S. D., Haveliwala, T. H., Manning, C., D., and Golub, G. H. (2003).
Extrapolation Methods for Accelerating Pagerank Computations. WWW 2003.

Kamvar, S. D., Haveliwala, T. H., Manning, C. D., and Golub, G. H. (2003).
“Extrapolation methods for accelerating pagerank computations,” in WWW 2003
(Budapest).

Kang, J., Zhou, Q., and Tong, H. (2022). “JuryGCN: quantifying jackknife
uncertainty on graph convolutional networks,” in KDD ’22: Proceedings of the 28th

Frontiers in BigData 14 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://doi.org/10.1145/2556288.2557010f
https://doi.org/10.1109/TVCG.2015.2467851
https://doi.org/10.2312/eurovisstar.20141174
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1145/3340531.3411953
https://doi.org/10.1145/3379445
https://doi.org/10.1145/1132952.1132954
https://doi.org/10.1145/3313831.3376180
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3097983.3098126
https://doi.org/10.48550/arXiv.2202.08235
https://doi.org/10.1145/3394486.3403060
https://doi.org/10.1145/3369782
https://doi.org/10.1145/3097983.3098040
https://doi.org/10.1145/1921632.1921636
https://doi.org/10.1145/3308558.3313488
https://doi.org/10.1145/3511808.3557202
https://doi.org/10.48550/arXiv.2107.02168
https://doi.org/10.1145/3404835.3463059
https://doi.org/10.48550/arXiv.2207.00048
https://doi.org/10.1145/3340531.3412127
https://doi.org/10.1145/3394486.3403081
https://doi.org/10.48550/arXiv.1805.11273
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1109/CVPR.2016.90
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

ACMSIGKDDConference on Knowledge Discovery and DataMining (Denver, CO),
742–752. doi: 10.1145/3534678.3539286

Kazemi, S. M., Goel, R., Jain, K., Kobyzev, I., Sethi, A., Forsyth, P., et al. (2020).
Representation learning for dynamic graphs: A survey. J. Mach. Learn. Res. 21,
1–73. Available online at: http://jmlr.org/papers/v21/19-447.html

Kerracher, N., Kennedy, J., and Chalmers, K. (2014). “The design space of
temporal graph visualisation,” in Proceedings of the 18th Eurographics Conference
on Visualisation (EuroVis ’14) (Swansea).

Kipf, T. N., and Welling, M. (2017). “Semi-supervised classification with graph
convolutional networks,” in ICLR 2017. 5th International Conference on Learning
Representations (Toulon).

Klicpera, J., Bojchevski, A., and Günnemann, S. (2019). “Predict then propagate:
Graph neural networks meet personalized pagerank,” in International Conference
on Learning Representations. ICLR 2019 (New Orleans, LA).

Kook, Y., Ko, J., and Shin, K. (2020). “Evolution of real-world hypergraphs:
patterns and models without oracles,” in ICDM 2020 : 20th IEEE International
Conference on Data Mining (Sorrento).

Kumar, S., Zhang, X., and Leskovec, J. (2019). “Predicting dynamic embedding
trajectory in temporal interaction networks,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
2019 (Anchorage, AK).

Kwak, H., Lee, C., Park, H., and Moon, S. B. (2010). “What is
Twitter, a social network or a news media?,” in WWW 2010 (Raleigh, NC).
doi: 10.1145/1772690.1772751

Lacasa, L., Luque, B., Ballesteros, F., Luque, J., and Nuno, J. C. (2008). From time
series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. U.S.A. 105,
4972–4975. doi: 10.1073/pnas.0709247105

Lentz, H., Selhorst, T., and Sokolov, I. M. (2012). Unfolding accessibility
provides a macroscopic approach to temporal networks. arXiv:1210.2283.
doi: 10.48550/arXiv.1210.2283

Leskovec, J., Backstrom, L., Kumar, R., and Tomkins, A. (2008). “Microscopic
evolution of social networks,” in KDD ’08: Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Las Vegas,
NV), 462–470. doi: 10.1145/1401890.1401948

Leskovec, J., and Faloutsos, C. (2007). “Scalable modeling of real
graphs using kronecker multiplication,” in Proceedings of the Twenty-
Fourth International Conference on Machine Learning (ICML 2007)
(Corvallis, OR).

Leskovec, J., Kleinberg, J. M., and Faloutsos, C. (2005). “Graphs over time:
densification laws, shrinking diameters and possible explanations,” in KDD ’05:
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining (Chicago, IL).

Leydesdorff, L., and Schank, T. (2008). Dynamic animations of journal maps:
indicators of structural changes and interdisciplinary developments. J. Assoc. Inf.
Sci. Technol. 59, 1810–1818. doi: 10.1002/asi.20891

Li, G., Müller, M., Thabet, A. K., and Ghanem, B. (2019). “DeepGCNs: can
GCNs go as deep as CNNs?,” in International Conference on Computer Vision 2019
(Seoul).

Li, H., Wang, X., Zhang, Z., Yuan, Z., Li, H., and Zhu, W. (2021). “Disentangled
contrastive learning on graphs,” in 35th Conference on Neural Information
Processing Systems (NeurIPS 2021) (Virtual Event).

Li, Y., Yu, R., Shahabi, C., and Liu, Y. (2018). “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in 6th International Conference on
Learning Representations, ICLR 2018 (Vancouver, BC).

Liu, L., Du, B., Ji, H., Zhai, C., and Tong, H. (2021). “Neural-answering logical
queries on knowledge graphs,” in KDD 2021 (Virtual Event).

Liu, M., Luo, Y., Uchino, K., Maruhashi, K., and Ji, S. (2022). “Generating 3D
molecules for target protein binding,” in Proceedings of the 39 th International
Conference on Machine Learning, PMLR 162 (Baltimore, MD).

Liu, Q., Allamanis, M., Brockschmidt, M., and Gaunt, A. L. (2018).
“Constrained graph variational autoencoders for molecule design,” in
32nd Conference on Neural Information Processing Systems (NeurIPS 2018)
(Montreal, QC).

Liu, X., Cheng, J., Song, Y., and Jiang, X. (2022). “Boosting graph structure
learning with dummy nodes,” in Proceedings of the 39 th International Conference
on Machine Learning, PMLR 162 (Baltimore, MD).

Liu, Z., Zhou, D., Zhu, Y., Gu, J., and He, J. (2020). “Towards fine-grained
temporal network representation via time-reinforced random walk,” in The Thirty-
Second Conference on Innovative Applications of Artificial Intelligence (Palo Alto,
CA). doi: 10.1609/aaai.v34i04.5936

Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H., et al. (2020).
“Parameterized explainer for graph neural network,” in NIPS’20: Proceedings
of the 34th International Conference on Neural Information Processing Systems
(Vancouver BC), 19620–19631.

Luo, Y., and Ji, S. (2022). “An autoregressive flow model for 3D molecular
geometry generation from scratch,” in ICLR 2022. Tenth International Conference
on Learning Representation (Virtual Event).

Mira-Iglesias, A., Navarro-Pardo, E., and Conejero, J. A. (2019). Power-law
distribution of natural visibility graphs from reaction times series. Symmetry
11:563. doi: 10.3390/sym11040563

Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., and
Jaiswal, S. (2017). graph2vec: Learning distributed representations of graphs.
arXiv:1707.05005. doi: 10.48550/arXiv.1707.05005

Nassar, H., Kennedy, C., Jain, S., Benson, A. R., and Gleich, D. F. (2020). “Using
cliques with higher-order spectral embeddings improves graph visualizations,”
in WWW ’20: Proceedings of The Web Conference 2020 (Taipei), 2927–2933.
doi: 10.1145/3366423.3380059

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2001). “On spectral clustering: analysis
and an algorithm,” in NeurIPS 2001 (Vancouver, BC).

Nguyen, G. H., Lee, J. B., Rossi, R. A., Ahmed, N. K., Koh, E., and Kim, S. (2018).
“Continuous-time dynamic network embeddings,” in WWW ’18: Proceedings of
The Web Conference 2018 (Lyon).

Nguyen, H. H., Imine, A., and Rusinowitch, M. (2015). “Anonymizing social
graphs via uncertainty semantics,” in ASIA CCS ’15: Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security (Singapore),
495–506. doi: 10.1145/2714576.2714584

Nguyen, V., Sugiyama, K., Nakov, P., and Kan, M. (2020). “FANG: leveraging
social context for fake news detection using graph representation,” in CIKM
’20: The 29th ACM International Conference on Information and Knowledge
Management (Virtual Event Ireland). doi: 10.1145/3340531.3412046

Nobre, C., Wootton, D., Harrison, L., and Lex, A. (2020). “Evaluating
multivariate network visualization techniques using a validated design and
crowdsourcing approach,” in CHI 2020 (Honolulu, HI).

Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., et al.
(2020). “EvolveGCN: evolving graph convolutional networks for dynamic graphs,”
in Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) (New York,
NY).

Park, H., and Kim, M. (2018). “Evograph: an effective and efficient graph
upscaling method for preserving graph properties,” in KDD 2018 (London).

Pennington, J., Socher, R., andManning, C. D. (2014). “Glove: Global vectors for
word representation,” in Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP) (Doha: Association for Computational
Linguistics), 1532–1543.

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). “Deepwalk: online learning of
social representations,” in KDD 2014 (New York, NY).

Perri, V., and Scholtes, I. (2019). Higher-order visualization of causal structures
in dynamics graphs. arXiv.org 1908.05976. doi: 10.48550/arXiv.1908.05976

Pfitzner, R., Scholtes, I., Garas, A., Tessone, C. J., and Schweitzer,
F. (2012). Betweenness preference: quantifying correlations in the
topological dynamics of temporal networks. Phys. Rev. Lett. 110:198701.
doi: 10.1103/PhysRevLett.110.198701

Qin, Z., Yu, T., Yang, Y., Khalil, I., Xiao, X., and Ren, K. (2017). “Generating
synthetic decentralized social graphs with local differential privacy,” in CCS 2017
(Dallas, TX).

Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M., et al. (2020). “GCC:
graph contrastive coding for graph neural network pre-training,” in KDD ’20:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Virtual Event).

Rauber, P. E., Falcão, A. X., and Telea, A. C. (2016). “Visualizing time-dependent
data using dynamic t-SNE,” in Eurographics Conference on Visualization (EuroVis)
2016, eds E. Bertini, N. Elmqvist, and T. Wischgoll (Groningen).

Rong, Y., Huang, W., Xu, T., and Huang, J. (2020). “Dropedge: towards deep
graph convolutional networks on node classification,” in ICLR 2020 (Addis Ababa).

Rosenstein, M. T., Marx, Z., Kaelbling, L. P., and Dietterich, T. G. (2005). “To
transfer or not to transfer,” inNIPS 2005Workshop on Transfer Learning (Whistler,
BC), 898, 1–4.

Sankar, A., Wu, Y., Gou, L., Zhang, W., and Yang, H. (2020). “Dysat: Deep
neural representation learning on dynamic graphs via self-attention networks,” in
WSDM ’20: Proceedings of the 13th International Conference on Web Search and
Data Mining (Houston TX), 519–527. doi: 10.1145/3336191.3371845

Frontiers in BigData 15 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://doi.org/10.1145/3534678.3539286
http://jmlr.org/papers/v21/19-447.html
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.48550/arXiv.1210.2283
https://doi.org/10.1145/1401890.1401948
https://doi.org/10.1002/asi.20891
https://doi.org/10.1609/aaai.v34i04.5936
https://doi.org/10.3390/sym11040563
https://doi.org/10.48550/arXiv.1707.05005
https://doi.org/10.1145/3366423.3380059
https://doi.org/10.1145/2714576.2714584
https://doi.org/10.1145/3340531.3412046
https://doi.org/10.48550/arXiv.1908.05976
https://doi.org/10.1103/PhysRevLett.110.198701
https://doi.org/10.1145/3336191.3371845
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

Saxena, A., Chakrabarti, S., and Talukdar, P. P. (2021). “Question answering
over temporal knowledge graphs,” in Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing. ACL 2021 (Bangkok),
6663–6676.

Scholtes, I. (2017). “When is a network a network?: Multi-order graphical model
selection in pathways and temporal networks,” in KDD ’17: Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(Halifax NS), 1037–1046. doi: 10.1145/3097983.3098145

Shang, C., Wang, G., Qi, P., and Huang, J. (2022). “Improving time sensitivity
for question answering over temporal knowledge graphs,” in Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Dublin),
8017–8026.

Shi, J., and Malik, J. (2000). Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell. 22, 888–905. doi: 10.1109/34.868688

Simonovsky, M., and Komodakis, N. (2018). Graphvae: towards
generation of small graphs using variational autoencoders. arXiv:1802.03480.
doi: 10.48550/arXiv.1802.03480

Spielman, D. A., and Teng, S. (2013). A local clustering algorithm for massive
graphs and its application to nearly linear time graph partitioning. SIAM J.
Comput. 42, 1–26. doi: 10.1137/080744888

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., andMei, Q. (2015). “LINE: large-
scale information network embedding,” in 24th International World Wide Web
Conference, WWW 2015 (Florence).

Tong, H., Faloutsos, C., Gallagher, B., and Eliassi-Rad, T. (2007). “Fast best-
effort pattern matching in large attributed graphs,” in Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
2007 (San Jose, CA).

Trivedi, R., Farajtabar, M., Biswal, P., and Zha, H. (2019). “Dyrep: Learning
representations over dynamic graphs,” in International Conference on Learning
Representations, ICLR 2019 (New Orleans, LA).

Tsiotas, D., and Magafas, L. (2020). The effect of anti-covid-19 policies on the
evolution of the disease: a complex network analysis of the successful case of
Greece. Physics 2, 325–339. doi: 10.3390/physics2020017

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Thirty-first Conference on Neural Information
Processing Systems, NeurIPS 2017 (Long Beach, CA).

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio,
Y. (2018). “Graph attention networks,” in NIPS’17: Proceedings of the 31st
International Conference on Neural Information Processing Systems (Long Beach,
CA).

Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., and Hjelm,
R. D. (2019). “Deep graph infomax,” in International Conference on Learning
Representations, ICLR 2019 (New Orleans, LA).

Vu, M. N., and Thai, M. T. (2020). “PGM-explainer: probabilistic graphical
model explanations for graph neural networks,” in 34th Conference on Neural
Information Processing Systems (NeurIPS 2020) (Vancouver, BC).

Wang, D., Qi, Y., Lin, J., Cui, P., Jia, Q., Wang, Z., et al. (2019).
“A semi-supervised graph attentive network for financial fraud detection,” in
2019 IEEE International Conference on Data Mining (ICDM), ICDM 2019
(Beijing).

Wang, Y., Cai, Y., Liang, Y., Ding, H., Wang, C., Bhatia, S., et al. (2021a).
“Adaptive data augmentation on temporal graphs,” in Advances in Neural
Information Processing Systems 34 (NeurIPS 2021) (Virtual Event).

Wang, Y., Chang, Y., Liu, Y., Leskovec, J., and Li, P. (2021b). “Inductive
representation learning in temporal networks via causal anonymous walks,”
in ICLR 2021. Ninth International Conference on Learning Representations
(Vienna).

Wu, F., Zhang, T., de Souza Jr. A.H., Fifty, C., Yu, T., and Weinberger,
K. Q. (2019). “Simplifying graph convolutional networks,” in Proceedings of
the 36th International Conference on Machine Learning. ICML 2019 (Long
Beach, CA).

Wu, X., Ying, X., Liu, K., and Chen, L. (2010). “A survey of privacy-preservation
of graphs and social networks,” in Managing and Mining Graph Data, Advances in
Database Systems, Vol. 40, eds C. Aggarwal, and H. Wang (Boston, MA: Springer),
421–453.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S. (2021). A
comprehensive survey on graph neural networks. IEEE Trans. Neural Networks
Learn. Syst. 32, 4–24. doi: 10.1109/TNNLS.2020.2978386

Xu, D., Cheng, W., Luo, D., Chen, H., and Zhang, X. (2021). “InfoGCL:
Information-aware graph contrastive learning,” in Advances in Neural Information
Processing Systems 34 (NeurIPS 2021) (Virtual Event).

Xu, D., Ruan, C., Körpeoglu, E., Kumar, S., and Achan, K. (2019). “Self-attention
with functional time representation learning,” in NeurIPS 2019 (Vancouver, BC).

Xu, D., Ruan, C., Körpeoglu, E., Kumar, S., and Achan, K. (2020). “Inductive
representation learning on temporal graphs,” in Eighth International Conference on
Learning Representations, ICLR 2020 (Addis Ababa).

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). “How powerful are graph
neural networks?,” in International Conference on Learning Representations, ICLR
2019 (New Orleans, LA).

Xu, K. S., Kliger, M., and III, A. O. H. (2013). A regularized graph layout
framework for dynamic network visualization. Data Min. Knowl. Discov. 27,
84–116. doi: 10.1007/s10618-012-0286-6

Xu, Z., Du, B., and Tong, H. (2022). Graph Sanitation with Application to Node
Classification. WWW 2022.

Yan, S., Xiong, Y., and Lin, D. (2018). “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in AAAI’18/IAAI’18/EAAI’18:
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth
AAAI Symposium on Educational Advances in Artificial Intelligence (New Orleans,
LA), 7444–7452.

Yan, Y., Liu, L., Ban, Y., Jing, B., and Tong, H. (2021a). “Dynamic knowledge
graph alignment,” in AAAI 2021 (Virtual Event).

Yan, Y., Zhang, S., and Tong, H. (2021b). “BRIGHT: a bridging algorithm for
network alignment,” in WWW 2021 (Ljubljana).

Yang, C., Wang, H., Zhang, K., Chen, L., and Sun, L. (2021). “Secure deep graph
generation with link differential privacy,” in 2021 International Joint Conference on
Artificial Intelligence. IJCAI 2021 (Montreal, QC).

Yang, Y., Marriott, K., Butler, M., Goncu, C., and Holloway, L. (2020). “Tactile
presentation of network data: Text, matrix or diagram?,” in CHI ’20: Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI),
1–12. doi: 10.1145/3313831.3376367

Yang, Z., Ding, M., Zhou, C., Yang, H., Zhou, J., and Tang, J. (2020).
“Understanding negative sampling in graph representation learning,” in KDD ’20:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Virtual Event CA).

Ying, X., and Wu, X. (2008). “Randomizing social networks: a spectrum
preserving approach,” in Proceedings of the 2008 SIAM International Conference
on Data Mining (SDM) (Atlanta, GA), 739–750. doi: 10.1137/1.9781611972788.67

Ying, Z., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J. (2019).
“GNNExplainer: generating explanations for graph neural networks,” in N33rd
Conference on Neural Information Processing Systems (NeurIPS 2019) (Vancouver,
BC).

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec, J. (2018).
“GraphRNN: Generating realistic graphs with deep auto-regressive models,” in
2018 International Conference on Machine Learning, ICML 2018 (Stockholm).

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y. (2020).
“Graph contrastive learning with augmentations,” in 34th Conference on Neural
Information Processing Systems (NeurIPS 2020) (Vancouver, BC).

Yu, B., Yin, H., and Zhu, Z. (2018). “Spatio-temporal graph convolutional
networks: a deep learning framework for traffic forecasting,” in Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)
(Stockholm).

Yu, W., Cheng, W., Aggarwal, C. C., Zhang, K., Chen, H., andWang, W. (2018).
“Netwalk: a flexible deep embedding approach for anomaly detection in dynamic
networks,” in KDD ’18: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (London), 2672–2681.
doi: 10.1145/3219819.3220024

Zang, C., Cui, P., Faloutsos, C., and Zhu, W. (2018). “On power law
growth of social networks,” IEEE Trans. Knowl. Data Eng. 30, 1727–1740.
doi: 10.1109/TKDE.2018.2801844

Zeno, G., Fond, T. L., and Neville, J. (2020). “Dynamic network modeling from
motif-activity,” inWWW ’20: Companion Proceedings of the Web Conference 2020
(Taipei), 390–397. doi: 10.1145/3366424.3383301

Zhang, M., and Chen, Y. (2018). “Link prediction based on graph neural
networks,” in 32nd Conference on Neural Information Processing Systems (NeurIPS
2018) (Montreal, QC).

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. (2018). “An end-to-end
deep learning architecture for graph classification,” in AAAI’18/IAAI’18/EAAI’18:
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth
AAAI Symposium on Educational Advances in Artificial Intelligence (New Orleans,
LA), 4438–4445.

Frontiers in BigData 16 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://doi.org/10.1145/3097983.3098145
https://doi.org/10.1109/34.868688
https://doi.org/10.48550/arXiv.1802.03480
https://doi.org/10.1137/080744888
https://doi.org/10.3390/physics2020017
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1007/s10618-012-0286-6
https://doi.org/10.1145/3313831.3376367
https://doi.org/10.1137/1.9781611972788.67
https://doi.org/10.1145/3219819.3220024
https://doi.org/10.1109/TKDE.2018.2801844
https://doi.org/10.1145/3366424.3383301
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Fu and He 10.3389/fdata.2022.1062637

Zhang, S., Li, S., and Yang, J. (2009). “GADDI: distance index based subgraph
matching in biological networks,” in 12th International Conference on Extending
Database Technology, EDBT 2009 (Saint Petersburg).

Zhang, S., and Tong, H. (2016). “FINAL: fast attributed network alignment,”
in KDD 2016: The 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (San Francisco, CA).

Zhang, X., and Zitnik, M. (2020). “GNNGuard: defending graph neural
networks against adversarial attacks,” in Neural Information Processing Systems
Online Conference 2020, NeurIPS 2020 (Virtual Event).

Zhao, L., and Akoglu, L. (2020). PairNorm: tackling oversmoothing in GNNs.
arXiv:1909.12223. doi: 10.48550/arXiv.1909.12223

Zheng, L., Fu, D., Maciejewski, R., and He, J. (2022). Deeper-GXX: deepening
arbitrary GNNs. arXiv:2110.13798. doi: 10.48550/arXiv.2110.13798

Zheng, L., Li, Z., Li, J., Li, Z., and Gao, J. (2019). “AddGraph: anomaly
detection in dynamic graph using attention-based temporal GCN,” in 2019
International Joint Conference on Artificial Intelligence (Macao), 4419–4425.
doi: 10.24963/ijcai.2019/614

Zhou, D., Zheng, L., Fu, D., Han, J., and He, J. (2022). “MentorGNN:
deriving curriculum for pre-training GNNs,” in CIKM2022, 31st ACM
International Conference on Information and Knowledge Management
(Atlanta, GA).

Zhou, D., Zheng, L., Han, J., and He, J. (2020). “A data-driven graph generative
model for temporal interaction networks,” in KDD ’20: Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(Virtual Event).

Zhou, D., Zheng, L., Xu, J., and He, J. (2019). Misc-GAN: a multi-scale
generative model for graphs. Front. Big Data 2:3. doi: 10.3389/fdata.2019.
00003

Zhou, Q., Li, L., Wu, X., Cao, N., Ying, L., and Tong, H. (2021). “Attent: Active
attributed network alignment,” in WWW 2021 (Ljubljana).

Zhu, D., Zhang, Z., Cui, P., and Zhu, W. (2019). “Robust graph
convolutional networks against adversarial attacks,” in KDD 2019
(Anchorage, AK).

Zhu, Z., Zhang, Z., Xhonneux, L. A. C., and Tang, J. (2021). “Neural Bellman-
Ford Networks: a general graph neural network framework for link prediction,” in
Thirty-Fifth Conference on Neural Information Processing Systems, NeurIPS 2021
(Virtual Event).

Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., and Wu, J. (2018). “Embedding
temporal network via neighborhood formation,” in KDD ’18: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (London), 2857–2866. doi: 10.1145/3219819.32
20054

Frontiers in BigData 17 frontiersin.org

https://doi.org/10.3389/fdata.2022.1062637
https://doi.org/10.48550/arXiv.1909.12223
https://doi.org/10.48550/arXiv.2110.13798
https://doi.org/10.24963/ijcai.2019/614
https://doi.org/10.3389/fdata.2019.00003
https://doi.org/10.1145/3219819.3220054
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future
	1. Introduction
	2. Relations among graph mining, graph representations, and graph neural networks
	2.1. Graph mining
	2.2. Graph representations
	2.2.1. Graph embedding (vector representation)
	2.2.2. Graph law (parametric representation)
	2.2.3. Graph visualization (visual representation)

	2.3. Graph neural networks

	3. Natural and artificial dynamics in graphs
	3.1. Dynamics in graph mining
	3.1.1. Natural dynamics in graph mining
	3.1.2. Artificial dynamics in graph mining
	3.1.3. Natural + artificial dynamics in graph mining

	3.2. Dynamics in graph representations
	3.2.1. Natural dynamics in graph representations
	3.2.2. Artificial dynamics in graph representations
	3.2.3. Natural + artificial dynamics in graph representations

	3.3. Dynamics in graph neural networks
	3.3.1. Natural dynamics in graph neural networks
	3.3.2. Artificial dynamics in graph neural networks
	3.3.3. Natural + artificial dynamics in graph neural networks

	4. Discussion and summary
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Author disclaimer
	References

