Publications

===========================================

Preprint (* denotes Equal Contribution)

What Do LLMs Need to Understand Graphs: A Survey of Parametric Representation of Graphs

πŸ”» Dongqi Fu*, Liri Fang*, Zihao Li*, Hanghang Tong, Vetle I Torvik, Jingrui He

πŸ”» [Paper]

===========================================

Published (* denotes Equal Contribution)

24. Learning Graph Quantized Tokenizers

πŸ”» Limei Wang*, Kaveh Hassani*, Si Zhang, Dongqi Fu, Baichuan Yuan, Weilin Cong, Zhigang Hua, Hao Wu, Ning Yao, Bo Long

πŸ”» ICLR 2025

πŸ”» [To Appear]

23. Temporal Heterogeneous Graph Generation with Privacy, Utility, and Efficiency

πŸ”» Xinyu He*, Dongqi Fu*, Hanghang Tong, Ross Maciejewski, Jingrui He

πŸ”» ICLR 2025 ( πŸ† Spotlight, 3.20% of 11,672 Submissions )

πŸ”» [To Appear] [Invited Talk at TGL on 04/17/2025]

22. Invariant Link Selector for Spatial-Temporal Out-of-Distribution Problem

πŸ”» Katherine Tieu, Dongqi Fu, Jun Wu, Jingrui He

πŸ”» AISTATS 2025

πŸ”» [To Appear]

21. APEXΒ²: Adaptive and Extreme Summarization for Personalized Knowledge Graphs

πŸ”» Zihao Li, Dongqi Fu, Mengting Ai, Jingrui He

πŸ”» KDD 2025

πŸ”» [To Appear]

20. Temporal Graph Neural Tangent Kernel with Graphon-Guaranteed

πŸ”» Katherine Tieu*, Dongqi Fu*, Yada Zhu, Hendrik Hamann, Jingrui He

πŸ”» NeurIPS 2024

πŸ”» [Paper] [Code] [Invited Talk at TGL on 02/13/2025]

19. PageRank Bandits for Link Prediction

πŸ”» Yikun Ban*, Jiaru Zou*, Zihao Li, Yunzhe Qi, Dongqi Fu, Jian Kang, Hanghang Tong, Jingrui He

πŸ”» NeurIPS 2024

πŸ”» [Paper] [Code]

18. BackTime: Backdoor Attacks on Multivariate Time Series Forecasting

πŸ”» Xiao Lin, Zhining Liu, Dongqi Fu, Ruizhong Qiu, Hanghang Tong

πŸ”» NeurIPS 2024 ( πŸ† Spotlight, 2.08% of 15,671 Submissions )

πŸ”» [Paper] [Code]

17. DrGNN: Deep Residual Graph Neural Network with Contrastive Learning

πŸ”» Lecheng Zheng*, Dongqi Fu*, Ross Maciejewski, Jingrui He

πŸ”» TMLR, October 2024

πŸ”» [Paper] [Code]

16. Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection

πŸ”» Dongqi Fu, Yada Zhu, Hanghang Tong, Kommy Weldemariam, Onkar Bhardwaj, Jingrui He

πŸ”» ICML 2024 (AI4Science Workshop)

πŸ”» [Paper]

15. VCR-Graphormer: A Mini-batch Graph Transformer via Virtual Connections

πŸ”» Dongqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey Malevich, Jingrui He, Bo Long

πŸ”» ICLR 2024

πŸ”» [Paper] [Poster] [Code]

14. Investigating Natural and Artificial Dynamics in Graph Data Mining and Machine Learning

πŸ”» Dongqi Fu

πŸ”» CIKM 2023 (Doctoral Symposium)

πŸ”» [Paper]

13. Privacy-Preserving Graph Machine Learning from Data to Computation: A Survey

πŸ”» Dongqi Fu*, Wenxuan Bao*, Ross Maciejewski, Hanghang Tong, Jingrui He

πŸ”» SIGKDD Explorations, June 2023

πŸ”» [Paper]

12. Fairness-Aware Clique-Preserving Spectral Clustering of Temporal Graphs

πŸ”» Dongqi Fu, Dawei Zhou, Ross Maciejewski, Arie Croitoru, Marcus Boyd, Jingrui He

πŸ”» WWW 2023

πŸ”» [Paper] [Slides] [Code]

11. Everything Evolves in Personalized PageRank

πŸ”» Zihao Li*, Dongqi Fu*, Jingrui He

πŸ”» WWW 2023

πŸ”» [Paper] [Slides] [Code]

10. Natural and Artificial Dynamics in GNNs: A Tutorial

πŸ”» Dongqi Fu, Zhe Xu, Hanghang Tong, Jingrui He

πŸ”» WSDM 2023 (Tutorial)

πŸ”» [Paper] [Slides]

9. DPPIN: A Biological Repository of Dynamic Protein-Protein Interaction Network Data

πŸ”» Dongqi Fu, Jingrui He

πŸ”» IEEE BigData 2022

πŸ”» [Paper] [Slides] [Video] [Data & Code]

8. Natural and Artificial Dynamics in Graphs: Concept, Progress, and Future

πŸ”» Dongqi Fu, Jingrui He

πŸ”» Frontiers in Big Data, December 2022

πŸ”» [Paper]

7. MentorGNN: Deriving Curriculum for Pre-Training GNNs

πŸ”» Dawei Zhou*, Lecheng Zheng*, Dongqi Fu, Jiawei Han, Jingrui He

πŸ”» CIKM 2022

πŸ”» [Paper] [Video] [Code]

6. DISCO: Comprehensive and Explainable Disinformation Detection

πŸ”» Dongqi Fu, Yikun Ban, Hanghang Tong, Ross Maciejewski, Jingrui He

πŸ”» CIKM 2022

πŸ”» [Paper] [Slides] [Demo] [Code]

5. Privacy-preserving Graph Analytics: Secure Generation and Federated Learning

πŸ”» Dongqi Fu, Jingrui He, Hanghang Tong, Ross Maciejewski

πŸ”» DHS CAOE Workshop on Privacy Enhancing Technologies for the Homeland Security Enterprise 2022

πŸ”» [Paper] [Slides]

4. Meta-Learned Metrics over Multi-Evolution Temporal Graphs

πŸ”» Dongqi Fu*, Liri Fang*, Ross Maciejewski, Vetle I Torvik, Jingrui He

πŸ”» KDD 2022

πŸ”» [Paper] [Slides] [Video] [Code]

3. SDG: A Simplified and Dynamic Graph Neural Network

πŸ”» Dongqi Fu, Jingrui He

πŸ”» SIGIR 2021

πŸ”» [Paper] [Slides] [Video] [Code]

2. A View-Adversarial Framework for Multi-View Network Embedding

πŸ”» Dongqi Fu*, Zhe Xu*, Bo Li, Hanghang Tong, Jingrui He

πŸ”» CIKM 2020

πŸ”» [Paper] [Slides] [Video] [Code]

1. Local Motif Clustering on Time-Evolving Graphs

πŸ”» Dongqi Fu, Dawei Zhou, Jingrui He

πŸ”» KDD 2020

πŸ”» [Paper] [Slides] [Video] [Code]